## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, eval = FALSE) options(rmarkdown.html_vignette.check_title = FALSE) ## ----------------------------------------------------------------------------- # rm(list = ls()) # # # simulate data # set.seed(123) # n <- 200 # subjects # p <- 10 # variable selection predictors # L <- 3 # cell types # library(GPTCM) # set.seed(123) # dat <- simData(n, p, L) # # # KM curve # library(survival) # library(survminer) # fit.km <- survival::survfit(Surv(time, event) ~ 1, data = dat$survObj) # ggsurv <- survminer::ggsurvplot(fit.km, # conf.int = TRUE, # xlab = "Follow-up time (year)", # ylab = "Survival probability (%)", # legend = "none", # risk.table = TRUE, # cumevents = TRUE, # palette = "jco", # risk.table.title = "Number of patients at risk", # tables.height = 0.1, # tables.theme = theme_cleantable(), # tables.y.text = FALSE, # ggtheme = theme_light() # ) # ggsurv$plot <- ggsurv$plot + # theme( # axis.text = element_text(size = 15), # axis.title = element_text(size = 15, face = "bold") # ) # ggsurv ## ----------------------------------------------------------------------------- # ## run Bayesian GPTCM # set.seed(123) # fit <- GPTCM(dat, nIter = 1100, burnin = 100) # # # draw time-dependent Brier scores # plotBrier(dat, # datMCMC = fit, # time.star = 3, # xlab = "Evalutation time points", # ylab = "Prediction error" # ) ## ----------------------------------------------------------------------------- # # show cel-type-specific effects # plotCoeff(dat, datMCMC = fit, estimator = "beta", bandwidth = 0.02) # # show BVS # plotCoeff(dat, datMCMC = fit, estimator = "gamma") ## ----------------------------------------------------------------------------- # # show cel-type-specific effects # plotCoeff(dat, datMCMC = fit, estimator = "zeta", bandwidth = 0.01) # # show BVS # plotCoeff(dat, datMCMC = fit, estimator = "eta")