
GGMselect: R package for estimating Gaussian

graphical models

Annie Bouvier, Christophe Giraud, Sylvie Huet, and Nicolas Verzelen

INRA, MaIAGE, 78352 Jouy-en-Josas Cedex, FRANCE
e-mail: Annie.Bouvier@inra.fr

Ecole Polytechnique, CMAP, UMR 7641
Route de Saclay 91128 Palaiseau Cedex, FRANCE
e-mail: Christophe.Giraud@polytechnique.edu

INRA, MaIAGE, 78352 Jouy-en-Josas Cedex, FRANCE
e-mail: Sylvie.Huet@inra.fr

Université Paris Sud, Laboratoire de Mathématiques, UMR 8628
Orsay Cedex F-91405

e-mail: nicolas.verzelen@math.u-psud.fr

Contact: Sylvie.Huet@inra.fr

Contents

1 Introduction . 1

2 Estimation procedure . 2

2.1 Penalized criterion Crit(.) . 3

2.2 Families of candidate graphs Ĝ available in GGMselect 3

3 User guide . 6

3.1 Graph selection with selectFast . 6

3.2 Graph selection with selectQE . 8

3.3 Graph selection with selectMyFam . 9

4 Auxiliary functions . 9

4.1 Random graph generator simulateGraph . 9

4.2 Penalty function penalty . 10

4.3 Graph converter convertGraph . 10

5 Examples . 10

References . 13

1. Introduction

Biotechnological developments in proteomics or transcriptomics enable to produce a huge amount

of data. One of the challenges for the statistician is to infer from these data the regulation network

of a family of genes (or proteins). Gaussian graphical models are promising probabilistic tools to

achieve this challenge.

Graphical modeling is based on the conditional independence concept: a direct relation between

two variables exists if those two variables are conditionally dependent given all the remaining

variables. These direct relations are represented by a graph: a node is associated to each variable

and an edge is set between two nodes when they are in direct relation. In the Gaussian setting,

a direct relation between two variables corresponds to a non-zero entry in the partial correlation

matrix, or equivalently to a non-zero entry in the inverse of the covariance matrix.

Let us consider p genes that will compose the nodes of the graph. For each gene we observe

some random response such as the differential expression on microarray experiment. The p
nodes of the graph are thus identified with p random variables denoted by (X1, . . . , Xp) assumed

1

Bouvier, Giraud, Huet, and Verzelen / GGMselect 2

to be distributed as a multivariate Gaussian N (0,Σ). The graph GΣ of conditional dependences

is defined as follows: there exists an edge between nodes a and b if and only if the variables Xa

and Xb are dependent given all the remaining variables. This will be denoted

a
GΣ∼ b.

GGMselect [6] is dedicated to the estimation of the graph GΣ on the basis of a n-sample from

N (0,Σ). In the following, a graph G will be identified with the set of its edges.

GGMselect is a two-stage procedure:

1. A family Ĝ of candidate graphs is built using either some data-driven method or some prior

knowledge on the true graph.

2. A graph Ĝ is selected among this family Ĝ by minimizing an empirical criterion based on

conditional least-squares.

GGMselect is specially designed to handle the case where the sample size n is smaller than

the number of variables p. Its performances have been assessed in [6]. It has been shown to

be consistent even when p is much larger than n, and its risk is controlled by a non-asymptotic

oracle-like inequality. The assumptions needed to establish these results are weaker than those

commonly used in the literature. In addition, numerical experiments have shown a nice behavior

on simulated examples.

Download: http://genome.jouy.inra.fr/logiciels/GGMselect/

Notations. We set Γ = {1, . . . , p} and for any graph G with nodes indexed by Γ, we write da(G)
for the degree of the node a in the graph G (which is the number of edges incident to a) and

deg(G) = maxa∈Γ da(G) for the degree of G. We also write ‖.‖n for the Euclidean norm on R
n

divided by
√
n and for any β ∈ R

p we define supp(β) as the set of the labels a ∈ Γ such that

βa 6= 0.

2. Estimation procedure

The main inputs are:

X A data matrix X of size n × p. Each row corresponds to an independent observation

of the vector (X1, . . . , Xp). We write Xa for the ath column of X.

dmax A vector of p integers: for each a ∈ Γ, dmax[a] is the maximum degree of the node

a within the graphs of the family Ĝ. For each a ∈ Γ, dmax[a] must be smaller than

min(n− 3, p− 1).
K A scale-free tuning parameter K > 1. Default value is K = 2.5.

GGMselect Algorithm

1. Build a (possibly data-driven) family Ĝ of candidate graphs.

2. Select Ĝ as any minimizer of Crit(.) over Ĝ:

Ĝ = argmin
G∈Ĝ

Crit(G) .

Step 2 and Crit(G) are described in Section 2.1 and the six families Ĝ of graphs available in the

package are described in Section 2.2.

Bouvier, Giraud, Huet, and Verzelen / GGMselect 3

2.1. Penalized criterion Crit(.)

For any graph G in Ĝ, we associate the p× p matrix θ̂G by

θ̂G = argmin




∑

i,a

[X− Xθ]
2
i,a , θ ∈ ΘG



 ,

where ΘG is the set of p × p matrices θ such that θa,b is non-zero if and only if there is an edge

between a and b in G. See [5] for more details.

Then, we define the criterion Crit(G) by

Crit(G) =

p∑

a=1

[
‖Xa −

∑

b

Xbθ̂
G
a,b‖2n

(
1 +

pen[da(G)]

n− da(G)

)]
, (1)

where the penalty function is defined by

pen(d) = K
n− d

n− d− 1
EDKhi

[
d+ 1, n− d− 1,

((
p− 1

d

)
(d+ 1)2

)−1
]

. (2)

The function EDKhi[d,N, .] is the inverse of the function

x 7→ P

(
Fd+2,N ≥ x

d+ 2

)
− x

d
P

(
Fd,N+2 ≥ N + 2

Nd
x

)
,

where Fd,N denotes a Fisher random variable with d and N degrees of freedom. See [1] Sect.6.1

for details.

2.2. Families of candidate graphs Ĝ available in GGMselect

Six families are available in GGMselect. Depending on the option family, the function selectFast

uses one or several of the families ĜC01, ĜLA, ĜEW, ĜC01,LA, ĜC01,LA,EW. The function selectQE

uses the family ĜQE.

The user can also minimize the criterion (1) over his own family Ĝ by using the function selectMyFam.

2.2.1. C01 family ĜC01 (with selectFast)

The family ĜC01 derives from the estimation procedure proposed in Wille and Bühlmann [8].

We write P (a, b|c) for the p-value of the likelihood ratio test of the hypothesis "cov(Xa, Xb|Xc) = 0"

and set

Pmax(a, b) = max {P (a, b|c), c ∈ {∅} ∪ Γ \ {a, b}} .

For any α > 0, the graph Ĝ01,α is defined by a
Ĝ01,α∼ b ⇐⇒ Pmax(a, b) ≤ α and the family ĜC01

is the family of nested graphs

ĜC01 =
{
Ĝ01,α, α > 0 and da(Ĝ01,α) ≤ dmax[a] for all a ∈ Γ

}
.

C01 Algorithm

1. Compute the p(p− 1)/2 values Pmax(a, b).
2. Order them.

3. Extract from these values the nested graphs
{
Ĝ01,α : α > 0

}
.

4. Stop as soon as there is a node a for which the number of neighbours exceeds

dmax[a].

Bouvier, Giraud, Huet, and Verzelen / GGMselect 4

2.2.2. Lasso-And family ĜLA (with selectFast)

The Lasso-And family ĜLA derives from the estimation procedure proposed by Meinshausen and

Bühlmann [7].

For any λ > 0, we define the p× p matrix θ̂λ by

θ̂λ = argmin




∑

i,a

[X− Xθ]
2
i,a + λ

∑

a 6=b

|θa,b|, for θ ∈ Θ



 , (3)

where Θ is the set of p × p matrices with 0 on the diagonal. Then, we define the graph Ĝλ
and by

setting an edge between a and b if both θ̂λa,b and θ̂λb,a are non-zero. Finally, we define the family

ĜLA as the set of graphs Ĝλ
and with λ large enough to ensure that da(Ĝ

λ
and) ≤ dmax[a] for all a ∈ Γ:

ĜLA =
{
Ĝλ

and , λ > λ̂and,dmax

}
, where λ̂and,dmax = sup

{
λ : ∃a ∈ Γ, da(Ĝ

λ
and) > dmax[a]

}
.

This family is efficiently computed with the LARS algorithm [4], see [6] Sect.2.

LA Algorithm

1. Compute with LARS the θ̂λ for all the values λ where the support of θ̂λ changes.

2. Compute the graphs Ĝλ
and for all λ > λ̂and,dmax.

2.2.3. Adaptive lasso family ĜEW (with selectFast)

The family ĜEW is a modified version of ĜLA inspired by the adaptive lasso of Zou [9]. The major

difference between ĜEW and ĜLA lies in the replacement of
∑ |θa,b| in (3) by

∑ |θa,b/θ̂EW
a,b |, where

θ̂EW is a preliminary estimator.

To build the family ĜEW, we start by computing the Exponential Weight estimator θ̂EW of [2]. For

each a ∈ Γ, we set Ha = {v ∈ R
p : va = 0} and

θ̂EW
a =

∫

Ha

v e−β‖Xa−Xv‖2
n

∏

j

(
1 + (vj/τ)

2
)−1 dv

Za
, (4)

with Za =
∫
Ha

e−β‖Xa−Xv‖2
n

∏
j

(
1 + (vj/τ)

2
)−1

dv and β, τ > 0.

The construction of ĜEW is now similar to the construction of ĜLA. For any λ > 0, we set

θ̂EW,λ = argmin




∑

i,a

[X− Xθ]
2
i,a + λ

∑

a 6=b

|θa,b/θ̂EW
a,b |, for θ ∈ Θ



 ,

and we define the graph ĜEW,λ
or by setting an edge between a and b if either θ̂EW,λ

b,a or θ̂EW,λ
a,b is

non-zero. Finally, the family ĜEW is given by

ĜEW =
{
ĜEW,λ

or , λ > λ̂EW
or,dmax

}
, where λ̂EW

or,dmax = sup
{
λ : ∃a ∈ Γ, da(Ĝ

EW,λ
or) > dmax[a]

}
.

The Exponential Weight estimator θ̂EW can be computed with a Langevin Monte-Carlo algorithm.

We refer to Section 3.1 and Dalalyan & Tsybakov [3] for details. Once θ̂EW is computed, the family

ĜEW is obtained as ĜLA with the help of the LARS-lasso algorithm.

Bouvier, Giraud, Huet, and Verzelen / GGMselect 5

EW Algorithm

1. Compute θ̂EW with a Langevin Monte-Carlo algorithm.

2. Compute with LARS the θ̂EW,λ for all the values λ where the support of θ̂EW,λ

changes.

3. Compute the graphs ĜEW,λ
or for all λ > λ̂EW

or,dmax.

2.2.4. Mixed family ĜC01,LA (with selectFast)

This family is defined by ĜC01,LA = ĜC01

⋃ ĜLA.

2.2.5. Mixed family ĜC01,LA,EW (with selectFast)

This family is defined by ĜC01,LA,EW = ĜC01

⋃ ĜLA

⋃ ĜEW.

2.2.6. Quasi-exhaustive family ĜQE (with selectQE)

For each node a ∈ Γ, we estimate the neighborhood of a by

n̂e(a) = argmin

{
‖Xa − ProjVS

(Xa)‖2n
(
1 +

pen(|S|)
n− |S|

)
: S ⊂ Γ \ {a} and |S| ≤ dmax[a]

}
,

where pen(.) is the penalty function (2) and ProjVS
denotes the orthogonal projection from R

n

onto VS = {Xβ : β ∈ R
p and supp(β) = S}. We then build two nested graphs Ĝand and Ĝor as in

Meinshausen and Bühlmann [7]

a
Ĝand∼ b ⇐⇒ a ∈ n̂e(b) and b ∈ n̂e(a) ,

a
Ĝor∼ b ⇐⇒ a ∈ n̂e(b) or b ∈ n̂e(a) ,

and define the family ĜQE as the family of all the graphs that lie between Ĝand and Ĝor

ĜQE =
{
G, Ĝand ⊂ G ⊂ Ĝor and da(G) ≤ dmax[a] for all a ∈ Γ

}
.

QE Algorithm

1. Compute n̂e(a) for all a ∈ Γ.

2. Compute the graphs Ĝand and Ĝor.

3. Work out the family ĜQE.

Bouvier, Giraud, Huet, and Verzelen / GGMselect 6

3. User guide

3.1. Graph selection with selectFast

Usage: selectFast(X, dmax=min(floor(nrow(X)/3),nrow(X)-3,ncol(X)-1), K=2.5,

family="EW", min.ev=10**(-8), verbose=FALSE, ...)

Main arguments:

X n× p matrix where n is the sample size and p the number of variables (nodes). The

sample size n should be larger than 3 and the number of variables p larger than 1.

dmax integer or p-dimensional vector of integers smaller or equal to min(n−3, p−1). When

dmax is an integer, it corresponds to the maximum degree of the graphs in the family

Ĝ. When dmax is a p-dimensional vector, then dmax[a] corresponds to the maximum

number of neighbors of a in the graphs G ∈ Ĝ. Default value is min(floor(n/3), n−
3, p− 1).

K scalar (or vector) with values larger than 1. Tuning parameter of the penalty func-

tion (2). Default value is K = 2.5 and typical values are between 1 and 3. Increasing

the value of K gives more sparse graphs.

family one or several values among "C01", "LA", "EW". When family="EW" (respectively

"LA", "C01"), the criterion (1) is minimized over the family ĜEW (respectively ĜLA,

ĜC01). In addition, when both families "C01" and "LA" are set, the criterion (1) is also

minimized over the family ĜC01,LA. When the three families "C01", "LA" and "EW"

are set, the criterion (1) is also minimized over the family ĜC01,LA,EW. Default value

is family="EW".

Other arguments:

min.ev minimum eigenvalue for matrix inversion. The rank of the matrix is calculated as the

number of eigenvalues greater than min.ev. The value of min.ev must be positive

and smaller than 0.01. Default value is min.ev=10**(-8).

verbose logical. If TRUE a trace of the current process is displayed in real time.

. . . arguments specific to "EW" (see below).

Output: A list with components: EW, LA, C01, C01.LA, C01.LA.EW

The list EW reports the results obtained for the family EW, etc. Each list has components:

Neighb array of size p ×max(dmax) × length(K). The vector Neighb[j, , iK] gives the nodes

connected to j for K[iK].
crit.min vector of dimension length(K). It gives the minimal values of the criterion for each

value of K.

G adjacency matrix with dimension p× p× length(K) Each slice G[, , iK] (for iK = 1 to

length(K)) is the adjacency matrix of the graph for K=K[iK].

Warning: Neighb and G are matrices if length(K)=1.

Complexity of C01 family: the complexity of selecFast with option family="C01" is of order

np3.

Complexity of LA family: the family ĜLA is build with the help of the LARS package. The com-

plexity of selecFast with option family="LA" is usually of order p2nmin(n, p).

Complexity of EW family and choice of some specific arguments: The Exponential Weight

estimator θ̂EW
a defined by (4) is computed using a Langevin Monte Carlo algorithm introduced

in [3]. This algorithm involves several parameters denoted T0, h, max.iter and eps (see below).

Bouvier, Giraud, Huet, and Verzelen / GGMselect 7

The Langevin Monte Carlo algorithm is based on the formula

θ̂EW
a = lim

T→∞

1

T − T0

∫ T

T0

vt dt,

with (vt)t≥0 solution of the Langevin equation dvt = F (vt)dt +
√
2 dWt, where W is a Brownian

motion on Ha = {v ∈ R
p : va = 0} and where F (v) = (F1(v), . . . , Fp(v)) is defined by

Fa(v) = 0 and Fj(v) =
2β

n
[XT (Xa − Xv)]j −

2vj
τ2 + v2j

, for j 6= a.

The process (vt)t≥0 is approximated via an Euler discretization scheme:

v(0) = 0 and v(k+1) = v(k) + hF (v(k)) +
√
2hWk, (5)

with W1,W2, . . . i.i.d. standard Gaussian random variables on Ha. Then, the average 1
T−T0

∫ T

T0
vt dt

is approximated by

v̄T =
1

[(T − T0)/h]

[T/h]−1∑

k=[T0/h]

v(k).

Finally, we set θ̂EW
a = v̄Tm

, where Tm = (1 +m)T0 with m chosen as follows: the integer m is the

minimum between max.iter and the smallest m such that

‖v̄Tm
− v̄Tm−1

‖2 < eps ‖v̄Tm−1
‖2. (6)

The parameters involved in the computation of θ̂EW
a are:

beta positive real number. Tuning parameter β of θ̂EW
a , see (4). Default value is

beta = n2/2

tau positive real number. Tuning parameter τ of θ̂EW
a , see (4). Default value is

tau = (n(p− 1))−1/2

h (small) positive real number. Discretization parameter h of the Euler scheme (5).

Default value is h=0.001

T0 positive integer. Heating parameter T0. The average v̄Tm
is computed for times Tm

multiple of T0. Default value is T0=10

max.iter positive integer. Maximal value of m for Tm. When m reaches the value max.iter,

the parameter θ̂EW
a is set to v̄Tmax.iter

and a warning is displayed. Default value is

max.iter=200

eps (small) positive real number. Tuning parameter of the convergence criterion (6). De-

fault value is eps=0.01

Choice of the Langevin Monte Carlo parameters h, T0, max.iter, eps:

• The Markov process (v(k) : k ≥ 0) can be transient when h is too large and the average v̄T
then blows up. In this case, choose a smaller value for h.

• When max.iter is reached you can either choose a larger T0 or increase the value of

max.iter. You may also choose a smaller value for h.

• Choosing a smaller value for eps or h increases the precision of the computation of θ̂EW
a but

it can significantly slow down the algorithm.

• We refer to [3] for a discussion on the choice of the parameters beta, tau, h, T0 (Section 5)

and a discussion on the convergence of the Euler scheme (Section 4).

The complexity of the Langevin Monte Carlo algorithm heavily depends on the choice of the

parameters h, T0, max.iter, eps. The maximum complexity is of order p2 T0/h× max.iter+ np2.

Some examples of CPU times are given in [6] Table 1 Sect. 4.

Bouvier, Giraud, Huet, and Verzelen / GGMselect 8

3.2. Graph selection with selectQE

Usage: selectQE(X, dmax=min(3,nrow(X)-3,ncol(X)-1), K=2.5, min.ev=10**(-8),

verbose=FALSE, max.size=10**8, max.iter=10**6, max.nG=10**8)

Main arguments:

X n× p matrix where n is the sample size and p the number of variables (nodes). The

sample size n should be larger than 3 and the number of variables p larger than 1.

dmax integer or p-dimensional vector of integers smaller or equal to min(n−3, p−1). When

dmax is an integer, it corresponds to the maximum degree of the graphs in the family

Ĝ. When dmax is a p-dimensional vector, then dmax[a] corresponds to the maximum

number of neighbors of a in the graphs G ∈ Ĝ. Default value is min(3, n− 3, p− 1).
K scalar (or vector) with values larger than 1. Tuning parameter of the penalty func-

tion (2). Default value is K = 2.5 and typical values are between 1 and 3. Increasing

the value of K gives more sparse graphs.

Other arguments:

min.ev minimum eigenvalue for matrix inversion. The rank of the matrix is calculated as the

number of eigenvalues greater than min.ev. The value of min.ev must be positive

and smaller than 0.01. Default value is min.ev=10**(-8).

verbose logical. If TRUE a trace of the current process is displayed in real time.

max.size integer. Maximum number of subsets S for estimating Ĝand and Ĝor, see Sec-

tion 2.2.6. If
∑p

a=1

∑dmax[a]
d=1 Cd

p−1 is greater than max.size, then execution is

stopped. Default value is max.size=10**8.

Output:

Neighb see selectFast.

min.crit see selectFast.

G see selectFast.

Complexity and choice of some advanced arguments.

The complexity of the QE algorithm is of order npD+1D3 + npD card(ĜQE), where D is the maxi-

mum of dmax. Thus, the QE algorithm cannot be used for large values of p and D. Furthermore,

even for moderate values of p and D the cardinality of ĜQE can be large and lead to memory

size (and computational time) problems. In that case, the research between Ĝand and Ĝor is

stopped and prolonged by a stepwise procedure. Let us denote by Ĝq the collection of graphs

G with q edges that belong to ĜQE and by Ĝq the minimizer of Crit over Ĝq. The exhaustive

search between Ĝand and Ĝor stops as soon as the number of graphs in Ĝq is either greater

than a threshold denoted max.nG, or greater than the maximum allowed memory size. Let qstop

be the value of q before stopping the exhaustive procedure and let Ĝstop be the minimizer of

Crit over
{
Ĝand

}
∪
{
Ĝq, q ≤ qstop

}
. A forward/backward stepwise procedure is taking over to ex-

plore graphs between Ĝqstop and Ĝor. Finally Ĝ is the minimizer of Crit over Ĝstop and the graph

stemmed from the stepwise procedure.

The stepwise procedure involves the following arguments:

max.iter integer. Maximum number of stepwise iterations. Default value is max.iter=10**6.

max.nG integer. Maximum number of graphs considered in the exhaustive search. Default

value is max.nG=10**8.

Bouvier, Giraud, Huet, and Verzelen / GGMselect 9

3.3. Graph selection with selectMyFam

Usage: selectMyFam(X, MyFamily, K=2.5, min.ev=10**(-8))

Arguments:

X n× p matrix where n is the sample size and p the number of variables (nodes). The

sample size n should be larger than 3 and the number of variables p larger than 1.

MyFamily list of p× p adjacency matrices corresponding to candidate graphs with degree less

or equal to n− 3
K scalar (or vector) with values larger than 1. Tuning parameter of the penalty func-

tion (2). Default value is K = 2.5 and typical values are between 1 and 3. Increasing

the value of K gives more sparse graphs.

min.ev minimum eigenvalue for matrix inversion. The rank of the matrix is calculated as the

number of eigenvalues greater than min.ev. The value of min.ev must be positive

and smaller than 0.01. Default value is min.ev=10**(-8)

Output:

Neighb see selectFast.

min.crit see selectFast.

G see selectFast.

Complexity: The complexity of selectMyFam is of maximum order npmin(n, p)×card(MyFamily).

4. Auxiliary functions

4.1. Random graph generator simulateGraph

The function simulateGraph generates random covariance matrices C with sparse inverse Ω.

The Gaussian law N (0, C) is then a sparse (non-uniform) Gaussian Graphical Model. The argu-

ments of the function simulateGraph are the number of nodes p and two real numbers eta and

extraeta between 0 and 1.

The inverse covariance matrix Ω is defined by Ω = BBT +D, where B is a random sparse lower

triangular matrix and D is a diagonal matrix with random entries sampled uniformly between 10−3

and 5.10−3. The latter matrix D prevents Ω from having too small eigenvalues. To generate B,

the set {1, . . . , p} is split into three consecutive sets I1, I2, I3. For any i < j in the same set

Ik, the entry Bi,j is set to 0 with probability 1 − ηint, where ηint = eta+ (1− eta) ∗ extraeta.

For any i < j belonging to two different sets, the entry Bi,j is set to 0 with probability 1 − ηext,
where ηext = extraeta. Then, the lower diagonal values that have not been set to 0 are drawn

according to a uniform law on [−1/
√
ε, 1/

√
ε] and the diagonal values are drawn according to a

uniform law on [0,
√
ε]. The value ε is set to 1/10.

Finally, the matrix C is obtained by first inverting Ω and then rescaling this inverse in order to have

1 on the diagonal (with the function cov2cor of the R package stats).

Usage: simulateGraph(p, eta, extraeta = eta/5)

Arguments:
p integer. Number of rows and columns of C. Should be greater than 1.

eta real number in (0,1). The proportion of edges in the three subgroups is eta+(1-

eta)*extraeta. Small values of eta give sparse graphs.

extraeta real number in (0,1). Proportion of edges inter groups.

Bouvier, Giraud, Huet, and Verzelen / GGMselect 10

4.2. Penalty function penalty

The function penalty compute the penalty function (2).

Usage: penalty(p,n, dmax=min(3,n-3,p-1), K=2.5)

Arguments:
p the number of variables. p should be greater than 1.

n the sample size. n should be greater than 3.

dmax integer or p-dimensional vector of integers smaller or equal to min(n-3, p-1). When

dmax is a scalar, it gives the maximum degree of the estimated graph. When dmax is

a vector, dmax[a] gives the maximum degree of the node a. Default value: min(3,n-

3,p-1).

K scalar or vector of real numbers larger than 1. Tuning parameter of the penalty func-

tion (2).

4.3. Graph converter convertGraph

A graph G can either be represented by an adjacency matrix or by an array AG where AG[a,] gives

the list of all the nodes connected to the node a in the graph. The function convertGraph converts

NG graphs represented by list of nodes into adjacency matrices. The NG graphs G1, . . . , GNG are

given as input through a single p× Dmax× NG array Graph, defined by Graph[, , i] = AGi
.

This function can be useful to generate the argument MyFamily of selectMyFam.

Usage: convertGraph(Graph)

Argument:
Graph array of dimension p× Dmax× NG, where Dmax is the maximum degree of the NG

graphs. When NG equals 1, Graph can be a matrix of dimension p× Dmax.

Graph[a iG] should be the indices of the nodes connected to the node a, for the

graph iG.

Graph[a,1,iG] should be equal to 0 if there is no node connected to the node a.

5. Examples

> library("GGMselect")

> p=30

> n=30

> # --

> # Random graph generator: use of simulateGraph

> # --

> eta=0.11

> Gr <- simulateGraph(p,eta)

> X <- rmvnorm(n, mean=rep(0,p), sigma=Gr$C)

> # --

> # Graph selection with family C01: use of selectFast

> # --

> GRest <- selectFast(X, family="C01")

>

> # --

> # Plot the result with the help of the package network

> # --

> library(network)

>

Bouvier, Giraud, Huet, and Verzelen / GGMselect 11

> gV <- network(Gr$G)

> g <- network(GRest$C01$G)

> par(mfrow=c(1,2), pty = "s")

> a <- plot(gV, usearrows = FALSE)

> title(sub="Simulated graph")

> plot(g, coord=a, usearrows = FALSE)

> title(sub="Graph selected with C01 family")

>

Simulated graph Graph selected with C01 family

> # --

> # Graph selection with family QE: use of selectQE

> # --

> GQE <- selectQE(X)

> # --

> # Plot the result

> # --

>

Bouvier, Giraud, Huet, and Verzelen / GGMselect 12

Simulated graph Graph selected with QE family

> # --

> # Graph selection with selectMyFam

> # --

> # generate a family of candidate graphs with glasso

> library("glasso")

> MyFamily <- NULL

> for (j in 1:3){

+ MyFamily[[j]] <- abs(sign(glasso(cov(X),rho=j/5)$wi))

+ diag(MyFamily[[j]]) <- 0

+ }

> # select a graph within MyFamily

> GMF <- selectMyFam(X,MyFamily)

> # --

> # Plot the result

> # --

>

>

Bouvier, Giraud, Huet, and Verzelen / GGMselect 13

Simulated graph Graph selected with MyFam

References

[1] Y. Baraud, C. Giraud, and S. Huet. Gaussian model selection with an unknown variance. Ann.

Statist., 37(2):630–672, 2009.

[2] A. Dalayan and A. Tsybakov. Aggregation by exponential weighting, sharp oracle inequalities

and sparsity. Machine Learning, 72(1-2):39– 61, 2008.

[3] A. Dalayan and A. Tsybakov. Sparse regression learning by aggregation and langevin monte-

carlo. arXiv:0903.1223, 2009.

[4] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist.,

32(2):407–499, 2004. With discussion, and a rejoinder by the authors.

[5] C. Giraud. Estimation of Gaussian graphs by model selection. Electron. J. Stat., 2:542–563,

2008.

[6] C. Giraud, S. Huet, and N. Verzelen. Graph selection with GGMselect. arXiv:0907.0619,

2009.

[7] N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the

lasso. Ann. Statist., 34(3):1436–1462, 2006.

[8] A. Wille and P. Bühlmann. Low-order conditional independence graphs for inferring genetic

networks. Stat. Appl. Genet. Mol. Biol., 5:Art. 1, 34 pp. (electronic), 2006.

[9] H. Zou. The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc., 101(476):1418–

1429, 2006.

