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EESPCA-package Eigenvectors
Description

Implementation of Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA).

Details
Package: EESPCA
Type: Package
Version: 0.7.0
Date: 2021
License: GPL-2
Note

This work was supported by the National Institutes of Health grants KO1LM012426, R21CA253408,
P20GM130454,and P30CA023108.

Author(s)

H. Robert Frost

References

* Frost, H. R. (2022). Eigenvectors from Eigenvalues Sparse Principal Component Analysis
(EESPCA). Journal of Computational and Graphical Statistics.
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computeApproxNormSquaredEigenvector
Approximates the normed squared eigenvector loadings

Description

Approximates the normed squared eigenvector loadings using a simplified version of the formula
associating normed squared eigenvector loadings with the eigenvalues of the full matrix and sub-
matrices.

Usage

computeApproxNormSquaredEigenvector(cov.X, v1, lambdal, max.iter=5,
lambda.diff.threshold=1e-6, trace=FALSE)

Arguments
cov. X Covariance matrix.
v1 Principal eigenvector of cov. X, i.e, the loadings of the first PC.
lambdal Largest eigenvalue of cov.X.
max.iter Maximum number of iterations for power iteration method when computing

sub-matrix eigenvalues. See description powerIteration.
lambda.diff.threshold
Threshold for exiting the power iteration calculation. See description powerIteration.

trace True if debugging messages should be displayed during execution.

Value

Vector of approximate normed squared eigenvector loadings.

See Also

eespca,powerIteration

Examples

set.seed(1)

# Simulate 10x5 MVN data matrix
X=matrix(rnorm(50), nrow=10)
# Estimate covariance matrix
cov.X = cov(X)

# Compute eigenvectors/values
eigen.out = eigen(cov.X)

vl = eigen.out$vectors[,1]
lambdal = eigen.out$values[1]
# Print true squared loadings
v1t2
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# Compute approximate normed squared eigenvector loadings
computeApproxNormSquaredEigenvector(cov.X=cov.X, vl=vl,
lambdal=1ambda1)

computeResidualMatrix Calculates the residual matrix from the reduced rank reconstruction

Description

Utility function for computing the residual matrix formed by subtracting from X a reduced rank
approximation of matrix X generated from the top k principal components contained in matrix V.

Usage
computeResidualMatrix(X,V,center=TRUE)
Arguments
X An n-by-p data matrix whose top k principal components are contained in the
p-by-k matrix V.
\ A p-by-k matrix containing the loadings for the top k principal components of
X.
center If true (the default), X will be mean-centered before the residual matrix is com-
puted. If the PCs in V were computed via SVD on a mean-centered matrix or via
eigen-decomposition of the sample covariance matrix, this should be set to true.
Value

Residual matrix.

Examples

set.seed(1)

# Simulate 10x5 MVN data matrix

X=matrix(rnorm(50), nrow=10)

# Perform PCA

prcomp.out = prcomp(X)

# Get rank 2 residual matrix

computeResidualMatrix (X=X, V=prcomp.out$rotation[,1:2])



eespca 5

eespca Eigenvectors from Eigenvalues Sparse Principal Component Analysis
(EESPCA)

Description

Computes the first sparse principal component of the specified data matrix using the Eigenvectors
from Eigenvalues Sparse Principal Component Analysis (EESPCA) method.

Usage
eespca(X, max.iter=20, sparse.threshold, lambda.diff.threshold=1e-6,
compute.sparse.lambda=FALSE, sub.mat.max.iter=5, trace=FALSE)
Arguments
X An n-by-p data matrix for which the first sparse PC will be computed.
max.iter Maximum number of iterations for power iteration method. See powerIteration.

sparse. threshold
Threshold on loadings used to induce sparsity. Loadings below this value are set
to 0. If not specified, defaults to 1/sqrt(p).
lambda.diff.threshold
Threshold for exiting the power iteration calculation. If the absolute relative
difference in lambda is less than this threshold between subsequent iterations,
the power iteration method is terminated. See powerIteration.
compute.sparse.lambda
If true, the sparse loadings will be used to compute the sparse eigenvalue.
sub.mat.max.iter
Maximum iterations for computation of sub-matrix eigenvalues using the power
iteration method. To maximize performance, set to 1. Uses the same lambda.diff.threshold.

trace True if debugging messages should be displayed during execution.

Value
A list with the following elements:

* "v1": The first non-sparse PC as calculated via power iteration.

* "lambdal": The variance of the first non-sparse PC as calculated via power iteration.

* "vl.sparse": First sparse PC.

* "lambdal.sparse": Variance of the first sparse PC. NA if compute.sparse.lambda is FALSE.

* "ratio": Vector of ratios of the sparse to non-sparse PC loadings.

References

 Frost, H. R. (2021). Eigenvectors from Eigenvalues Sparse Principal Component Analysis
(EESPCA). arXiv e-prints. https://arxiv.org/abs/2006.01924
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See Also

eespcaForK,computeApproxNormSquaredEigenvector, powerIteration

Examples

set.seed(1)

# Simulate 10x5 MVN data matrix

X=matrix(rnorm(50), nrow=10)

# Compute first sparse PC loadings using default threshold
eespca(X=X)

eespcaCV Cross-validation for Eigenvectors from Eigenvalues Sparse Principal
Component Analysis (EESPCA)

Description

Performs cross-validation of EESPCA to determine the optimal sparsity threshold. Selection is
based on the minimization of reconstruction error. Based on the cross-validation approach of Witten
et al. as implemented by the SPC. cv method in the PMA package.

Usage
eespcaCV(X, max.iter=20, sparse.threshold.values, nfolds=5,
lambda.diff.threshold=1e-6, compute.sparse.lambda=FALSE,
sub.mat.max.iter=5, trace=FALSE)
Arguments
X See description for eespca
max.iter See description for eespca

sparse.threshold.values
Vector of threshold values to evaluate via cross-validation. See description for
eespca for details.

nfolds Number of cross-validation folds.
lambda.diff.threshold
See description for eespca

compute.sparse. lambda
See description for eespca

sub.mat.max.iter
See description for eespca

trace See description for eespca
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Value

A list with the following elements:

* "cv": The mean of the out-of-sample reconstruction error computed for each threshold.

* "cverror": The standard deviations of the means of the out-of-sample reconstruction error
computed for each threshold.

* "best.sparsity": Threshold value with the lowest mean reconstruction error.

* "best.sparsity.lse": Threshold value whose mean reconstruction error is within 1 standard
error of the lowest.

¢ "nonzerovs": Mean number of nonzero values for each threshold.
* "sparse.threshold.values": Tested threshold values.

¢ "nfolds": Number of cross-validation folds.

References

 Frost, H. R. (2021). Eigenvectors from Eigenvalues Sparse Principal Component Analysis
(EESPCA). arXiv e-prints. https://arxiv.org/abs/2006.01924

* Witten, D. M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition, with

applications to sparse principal components and canonical correlation analysis. Biostatistics,
10(3), 515-534.

See Also

eespca, PMA{SPC.cv}

Examples

set.seed(1)
# Simulate 10x5 MVN data matrix
X=matrix(rnorm(50), nrow=10)
# Generate range of threshold values to evaluate
default.threshold = 1/sqrt(5)
threshold.values = seq(from=.5*default.threshold, to=1.5*default.threshold, length.out=10)
# Use 5-fold cross-validation to estimate optimal sparsity threshold
eespcaCV(X=X, sparse.threshold.values=threshold.values)

eespcaForkK Multi-PC version of Eigenvectors from Eigenvalues Sparse Principal
Component Analysis (EESPCA)
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Description

Computes multiple sparse principal components of the specified data matrix via sequential appli-
cation of the Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA) al-
gorithm. After computing the first sparse PC via the eespca function, subsequent sparse PCs are
computing by repeatedly applying eespca to the residual matrix formed by subtracting the recon-
struction of X from the original X. Multiple sparse PCs are not guaranteed to be orthogonal.

Note that the accuracy of the sparse approximation declines substantially for PCs with very small
variances. To avoid this issue, k should not be set higher than the number of statistically significant
PCs according to a Tracey-Widom test.

Usage
eespcaForK(X, k=2, max.iter=20, sparse.threshold, lambda.diff.threshold=1e-6,
compute.sparse.lambda=FALSE, sub.mat.max.iter=5, trace=FALSE)
Arguments

X An n-by-p data matrix for which the first k sparse PCs will be computed.

k The number of sparse PCs to compute. The specified k must be 2 or greater (for
k=1, use the eespca method). A check is made that k is not greater than the
maximum theoretical rank of X but, for performance reasons, a check is NOT
made that k is less than or equal to the actual rank of X.

max.iter See description for eespca

sparse. threshold

See description for eespca
lambda.diff.threshold

See description for eespca
compute.sparse.lambda

See description for eespca
sub.mat.max.iter

See description for eespca

trace See description for eespca

Value
A list with the following elements:

* "V": Matrix of sparse loadings for the first k PCs.

* "lambdas": Vector of variances of the first k sparse PCs.

References

* Frost, H. R. (2021). Eigenvectors from Eigenvalues Sparse Principal Component Analysis
(EESPCA). arXiv e-prints. https://arxiv.org/abs/2006.01924

See Also

eespca
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Examples

set.seed(1)

# Simulate 10x5 MVN data matrix
X=matrix(rnorm(50), nrow=10)

# Get first two sparse PCs

eespcaForK(X=X, sparse.threshold=1/sqrt(5), k=2)

powerIteration Power iteration method for calculating principal eigenvector and
eigenvalue.

Description

Computes the principal eigenvector and eigenvalue of the specified matrix using the power iteration
method. Includes support for truncating the estimated eigenvector on each iteration to retain just
the k eigenvector loadings with the largest absolute values with all other values set to 0, i.e., the the
TPower method by Yuan & Zhang.

Usage

powerIteration(X, k, vl.init, max.iter=10, lambda.diff.threshold=1e-6, trace=FALSE)

Arguments

X Matrix for which the largest eigenvector and eigenvalue will be computed.

k If specified, the estimated eigenvector is truncated on each iteration to retain
only the k loadings with the largest absolute values, all other loadings are set to
0. Must be an integer between 1 and ncol(X).

vl.init If specified, the power iteration calculation will be initialized using this vec-
tor, otherwise, the calculation will be initialized using a unit vector with equal
values.

max.iter Maximum number of iterations for power iteration method.

lambda.diff.threshold
Threshold for exiting the power iteration calculation. If the absolute relative
difference in computed eigenvalue is less than this threshold between subsequent
iterations, the power iteration method is terminated.

trace True if debugging messages should be displayed during execution.

Value
A list with the following elements:
* "v1": The principal eigenvector of X.

* "lambda": The largest eigenvalue of X.

* "num.iter": Number of iterations of the power iteration method before termination.
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References

* Yuan, X.-T. and Zhang, T. (2013). Truncated power method for sparse eigenvalue problems.
J. Mach. Learn. Res., 14(1), 899-925.

See Also

eespca

Examples

set.seed(1)

# Simulate 10x5 MVN data matrix

X=matrix(rnorm(50), nrow=10)

# Compute sample covariance matrix

cov.X = cov(X)

# Use power iteration to get first PC loadings using default initial vector
powerIteration(X=cov.X)

reconstruct Calculates the reduced rank reconstruction

Description

Utility function for computing the reduced rank reconstruction of X using the PC loadings in V.

Usage
reconstruct(X,V,center=TRUE)
Arguments
X An n-by-p data matrix whose top k principal components are contained the p-
by-k matrix V.
\ A p-by-k matrix containing the loadings for the top k principal components of
X.
center If true (the default), X will be mean-centered before the reconstruction is com-
puted. If the PCs in V were computed via SVD on a mean-centered matrix or via
eigen-decomposition of the sample covariance matrix, this should be set to true.
Value

Reduced rank reconstruction of X.



reconstructionError 11

Examples

set.seed(1)

# Simulate 10x5 MVN data matrix
X=matrix(rnorm(50), nrow=10)

# Perform PCA

prcomp.out = prcomp(X)

# Get rank 2 reconstruction
reconstruct(X, prcomp.out$rotation[,1:2])

reconstructionError Calculates the reduced rank reconstruction error

Description

Utility function for computing the squared Frobenius norm of the residual matrix formed by sub-
tracting from X a reduced rank approximation of matrix X generated from the top k principal com-
ponents contained in matrix V.

Usage
reconstructionError(X,V,center=TRUE)
Arguments
X An n-by-p data matrix whose top k principal components are contained the p-
by-k matrix V.
\% A p-by-k matrix containing the loadings for the top k principal components of
X.
center If true (the default), X will be mean-centered before the reconstruction error is
computed. If the PCs in V were computed via SVD on a mean-centered matrix
or via eigen-decomposition of the sample covariance matrix, this should be set
to true.
Value

The squared Frobenius norm of the residual matrix.

Examples

set.seed(1)
# Simulate 10x5 MVN data matrix
X=matrix(rnorm(50), nrow=10)
# Perform PCA
prcomp.out = prcomp(X)
# Get rank 2 reconstruction error, which will be the minimum since the first 2 PCs are used
reconstructionError(X, prcomp.out$rotation[,1:2])
# Use all PCs to get approximately @ reconstruction error
reconstructionError(X, prcomp.out$rotation)
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riflelnit Computes the initial eigenvector for the rifle method of Tan et al.

Description

Computes the initial eigenvector for the rifle method of Tan et al. (as implemented by the rifle
method in the rifle R package) using the initial.convex method from the rifle package with
lambda=sqrt(log(p)/n) and K=1.

Usage
rifleInit(X)
Arguments
X n-by-p data matrix to be evaluated via PCA.
Value

Initial eigenvector to use with rifle method.

References

e Tan, K. M., Wang, Z., Liu, H., and Zhang, T. (2018). Sparse generalized eigenvalue problem:
optimal statistical rates via truncated rayleigh flow. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 80(5), 1057-1086.

See Also

riflePCACV, rifle{rifle}, rifle{initial.convex}

Examples

set.seed(1)

# Simulate 10x5 MVN data matrix

X=matrix(rnorm(50), nrow=10)

# Compute initial eigenvector to use with rifle method

vl.init = rifleInit(X)

# Use with rifle method to get first PC loadings with 2 non-zero elements
rifle(A=cov(X), B=diag(5), init=v1.init, k=2)
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riflePCACV Sparsity parameter selection via cross-validation for rifle method of
Tan et al.

Description

Sparsity parameter selection for PCA-based rifle (as implemented by the rifle method in the rifle
package) using the cross-validation approach of Witten et al. as implemented by the SPC. cv method
in the PMA package.

Usage
riflePCACV(X, k.values, nfolds=5)

Arguments

X n-by-p data matrix being evaluated via PCA.

k.values Set of truncation parameter values to evaluate via cross-validation. Values must

be between 1 and p.

nfolds Number of folds for cross-validation

Value

k value that generated the smallest cross-validation error.

References

e Tan, K. M., Wang, Z., Liu, H., and Zhang, T. (2018). Sparse generalized eigenvalue problem:
optimal statistical rates via truncated rayleigh flow. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 80(5), 1057-1086.

* Witten, D. M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis. Biostatistics,
10(3), 515-534.

See Also
rifleInit, rifle{rifle}, PMA{SPC.cv}

Examples

set.seed(1)

# Simulate 10x5 MVN data matrix

X=matrix(rnorm(50), nrow=10)

# Generate range of k values to evaluate

k.values = 1:5

# Use 5-fold cross-validation to estimate optimal k value
riflePCACV (X=X, k.values=k.values)
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tpower Implementation of the Yuan and Zhang TPower method.

Description

Implements the TPower method by Yuan and Zhang. Specifically, it computes the sparse principal
eigenvector using power iteration method where the estimated eigenvector is truncated on each
iteration to retain just the k eigenvector loadings with the largest absolute values with all other
values set to 0.

Usage
tpower(X, k, vl.init, max.iter=10, lambda.diff.threshold=1e-6, trace=FALSE)
Arguments
X Matrix for which the largest eigenvector and eigenvalue will be computed.
k Must be an integer between 1 and ncol(X). The estimated eigenvector is trun-
cated on each iteration to retain only the k loadings with the largest absolute
values, all other loadings are set to 0.
vl.init If specified, the power iteration calculation will be initialized using this vec-
tor, otherwise, the calculation will be initialized using a unit vector with equal
values.
max.iter Maximum number of iterations for power iteration method.

lambda.diff.threshold
Threshold for exiting the power iteration calculation. If the absolute relative dif-
ference in computed eigenvalues is less than this threshold between subsequent
iterations, the power iteration method is terminated.

trace True if debugging messages should be displayed during execution.

Value

The estimated sparse principal eigenvector.

References
* Yuan, X.-T. and Zhang, T. (2013). Truncated power method for sparse eigenvalue problems.
J. Mach. Learn. Res., 14(1), 899-925.
See Also

powerIteration,tpowerPCACV
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Examples

set.seed(1)

# Simulate 10x5 MVN data matrix

X=matrix(rnorm(50), nrow=10)

# Compute first sparse PC loadings with 2 non-zero elements
tpower (X=cov(X), k=2)

tpowerPCACV Sparsity parameter selection for the Yuan and Zhang TPower method
using cross-validation.

Description

Sparsity parameter selection for PCA-based TPower using the cross-validation approach of Witten
et al. as implemented by the SPC. cv method in the PMA package.

Usage
tpowerPCACV(X, k.values, nfolds=5)

Arguments

X n-by-p data matrix being evaluated via PCA.

k.values Set of truncation parameter values to evaluate via cross-validation. Values must

be between 1 and p.

nfolds Number of folds for cross-validation

Value

k value that generated the smallest cross-validation error.

References

* Yuan, X.-T. and Zhang, T. (2013). Truncated power method for sparse eigenvalue problems.
J. Mach. Learn. Res., 14(1), 899-925.

* Witten, D. M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis. Biostatistics,
10(3), 515-534.
See Also

tpower,PMA{SPC.cv}
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Examples

set.seed(1)

# Simulate 10x5 MVN data matrix

X=matrix(rnorm(50), nrow=10)

# Generate range of k values to evaluate

k.values = 1:5

# Use 5-fold cross-validation to estimate optimal k value
tpowerPCACV (X=X, k.values=k.values)
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