Package 'DPtree'

January 20, 2025

Title Dirichlet-Based Polya Tree

Version 1.0.1

Description Contains functions to perform copula estimation by the non-parametric Bayesian method, Dirichlet-based Polya Tree. See Ning (2018) <doi:10.1080/00949655.2017.1421194>.

Depends R (>= 3.3.1)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports MCMCpack, stats, plyr, MASS, Rdpack

RdMacros Rdpack

RoxygenNote 6.0.1

NeedsCompilation no

Author Shaoyang Ning [aut, cre]

Maintainer Shaoyang Ning <shaoyangning@fas.harvard.edu>

Repository CRAN

Date/Publication 2018-06-19 09:17:55 UTC

Contents

dDPTreeRealize	2
DPTreeDensity	2
DPTreePMeanDensity	3
DPTreePosterior	4
DPTreePosteriorMulti	5
DPTreePrior	6
pDPTreeRealize	6
RealizeDPTree	7
SampleDPTreeDensity	8
	- 9

Index

dDPTreeRealize

Description

dDPTreeRealize returns the value of density function of realized distribution from D-P tree at certain given point on copula space.

Usage

```
dDPTreeRealize(d, x)
```

Arguments

d	A 2^m by 2^m matrix, m being the approximating level. Normalized measures for all 2^m by 2^m sub-partitions on copula space given by the realized distribution from D-P tree, as returned by DPTreeDensity.
x	An array of dimension n by 2. The points on copula space for density function evluation. Should be between 0 and 1.

Value

An array of length n. The values of PDF of the input D-P tree distribution evaluated at the input points.

References

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Journal of Statistical Computation and Simulation*, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

```
dDPTreeRealize(DPTreePMeanDensity(DPTreePrior(m=2, z=1)),c(0.5,0.5))
```

DPTreeDensity	Calculating sub-partition probabiltiy measures for a realized distribu-
	tion from D-P tree.

Description

DPTreeDensity returns the probablity measures in the finest sub-partitions of a realized distribution from D-P tree prior/posterior.

Usage

DPTreeDensity(Z)

Arguments

Ζ

An array of dimension of 2^m by 2^m by m, m being the approximation level. Realized Z's for all partitions at each level, as returned by RealizeDPTree.

Value

A 2^m by 2^m matrix. Normalized measures for all 2^m by 2^m sub-partitions on copula space given by the realized distribution from D-P tree.

References

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Journal of Statistical Computation and Simulation*, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

```
dp.rlz <- RealizeDPTree(DPTreePrior(m=2, z=1))
DPTreeDensity(dp.rlz)</pre>
```

DPTreePMeanDensity	Calculating sub-partition probabiltiy measures for the posterior mean
	distribution from D-P tree.

Description

DPTreePMeanDensity returns the probablity measures in the finest sub-partitions of the posterior mean from D-P tree.

Usage

```
DPTreePMeanDensity(prior)
```

Arguments

```
prior
```

A list. D-P tree specification. Should be in same format as returned from DPTreePrior or DPTreePosterior.

Value

A 2^m by 2^m matrix. Normalized measures for all 2^m by 2^m sub-partitions on copula space given by the posterior mean distribution from D-P tree.

References

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Journal of Statistical Computation and Simulation*, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

```
DPTreePMeanDensity(DPTreePrior(m=2, z=1))
```

DPTreePosterior *D-P tree posterior updating from a single copula observation.*

Description

DPTreePosterior returns the D-P tree posterior given input copula data.

Usage

```
DPTreePosterior(x, prior, w = 1)
```

Arguments

x	An array of length 2. Single copula data observation. Each element should be between 0 and 1.
prior	A list. Should be in same format as returned from DPTreePrior.
W	A positive number. Weight of data for posterior updating. Default 1.

Value

A list.

An array containing the hyperparameters of D-P trees.

References

а

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Journal of Statistical Computation and Simulation*, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

```
nsim = 1
rho = 0.9
data1 <- MASS::mvrnorm(n=nsim, mu=rep(0, 2), Sigma=matrix(c(1, rho, rho, 1), 2, 2))
data2 <- stats::pnorm(data1)
DPTreePosterior(x=data2, prior=DPTreePrior(m=4, z=1))</pre>
```

DPTreePosteriorMulti *D-P tree posterior updating from multiple copula observations.*

Description

DPTreePosteriorMulti returns the D-P tree posterior given input copula data.

Usage

```
DPTreePosteriorMulti(x, prior, w = 1)
```

Arguments

x	An array of dimension n by 2. Multiple copula data observations, with each row being a bivariate copula observation. All elements should be between 0 and 1.
prior	A list. Should be in same format as returned from DPTreePrior.
W	A positive number or an array of length n. Weight of data for posterior updating. Default 1.

Value

A list.

a An array containing the hyperparameters of D-P trees.

References

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Journal of Statistical Computation and Simulation*, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

```
nsim = 10
rho = 0.9
data1 <- MASS::mvrnorm(n=nsim, mu=rep(0, 2), Sigma=matrix(c(1, rho, rho, 1), 2, 2))
data2 <- stats::pnorm(data1)
DPTreePosteriorMulti(x=data2, prior=DPTreePrior(m=4, z=1))</pre>
```

DPTreePrior

Description

DPTreePrior returns a standard D-P Tree prior based on specified hyperparameters.

Usage

DPTreePrior(m = 4, z = 1)

Arguments

m	A positive integer. The finite approximation level for D-P tree. Default m=4.
Z	A positive number. On i-th level, the hyperparameter for D-P tree prior is $z \times i^2$. Default z=1.

Value

A list.

An array	containing the	hyperparameters	of D-P trees.

References

а

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Journal of Statistical Computation and Simulation*, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

DPTreePrior(m=6, z=1)

pDPTreeRealize The disitribution function for realized distribution from D-P tree.

Description

pDPTreeRealize returns the value of distribution function of realized distribution from D-P tree at certain given point on copula space.

Usage

pDPTreeRealize(d, x)

RealizeDPTree

Arguments

d	A 2^m by 2^m matrix, m being the approximating level. Normalized measures for
	all 2^m by 2^m sub-partititons on copula space given by the realized distribution
	from D-P tree, as returned by DPTreeDensity.
х	An array of dimension n by 2. The points on copula space for distribution func-
	tion evluation. Should be between 0 and 1.

Value

An array of length n. The values of CDF of the input D-P tree distribution evaluated at the input points.

References

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Journal of Statistical Computation and Simulation*, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

pDPTreeRealize(DPTreePMeanDensity(DPTreePrior(m=2, z=1)),c(0.5,0.5))

Sumpling a realized distribution from the D-1 free.	RealizeDPTree	Sampling a realized distribution from the D-P Tree.
---	---------------	---

Description

RealizeDPTree returns a realized (copula) distribution sampled from the input D-P Tree.

Usage

```
RealizeDPTree(prior)
```

Arguments

prior

A list. Should be in same format as returned from DPTreePrior.

Value

An array of dimension 2^m by 2^m by m. m is the approximation level. Realized Z's for all partitions at each level. Three dimensions represent two marginals, and the level respectively.

References

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Jour*nal of Statistical Computation and Simulation, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

RealizeDPTree(DPTreePrior(m=2, z=1))

SampleDPTreeDensity Sample a copula observation from a realized distribution from D-P tree.

Description

SampleDPTreeDensity returns a copula sample from a realized distribution from D-P tree.

Usage

SampleDPTreeDensity(nsam, d)

Arguments

nsam	A positive integer. The sample size.
d	A 2^m by 2^m matrix, m being the approximating level. Normalized measures for
	all 2^m by 2^m sub-partititons on copula space given by the realized distribution
	from D-P tree, as returned by DPTreeDensity.

Value

An array of dimension nsam by 2. The values of PDF of the input D-P tree distribution evaluated at the input points.

References

Ning S and Shephard N (2018). "A nonparametric Bayesian approach to copula estimation." *Journal of Statistical Computation and Simulation*, **88**(6), pp. 1081-1105. doi: 10.1080/00949655.2017.1421194.

Examples

SampleDPTreeDensity(10, DPTreePMeanDensity(DPTreePrior(m=2, z=1)))

Index

dDPTreeRealize, 2 DPTreeDensity, 2 DPTreePMeanDensity, 3 DPTreePosterior, 4 DPTreePosteriorMulti, 5 DPTreePrior, 6

pDPTreeRealize, 6

RealizeDPTree, 7

SampleDPTreeDensity, 8