
Package ‘DPpack’
January 20, 2025

Type Package

Title Differentially Private Statistical Analysis and Machine Learning

Version 0.2.2

Maintainer Spencer Giddens <giddens2spencer@gmail.com>

Description An implementation of common statistical analysis and models with
differential privacy (Dwork et al., 2006a) <doi:10.1007/11681878_14>
guarantees. The package contains, for example, functions providing
differentially private computations of mean, variance, median, histograms,
and contingency tables. It also implements some statistical models and
machine learning algorithms such as linear regression (Kifer et al., 2012)
<https://proceedings.mlr.press/v23/kifer12.html>
and SVM (Chaudhuri et al., 2011)
<https://jmlr.org/papers/v12/chaudhuri11a.html>. In addition, it implements
some popular randomization mechanisms, including
the Laplace mechanism (Dwork et al., 2006a)
<doi:10.1007/11681878_14>, Gaussian mechanism (Dwork et al., 2006b)
<doi:10.1007/11761679_29>, analytic Gaussian mechanism (Balle & Wang, 2018)
<https://proceedings.mlr.press/v80/balle18a.html>, and exponential mechanism
(McSherry & Talwar, 2007) <doi:10.1109/FOCS.2007.66>.

License GPL-3 | file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports rmutil (>= 1.1.5), Rdpack (>= 2.1.2), R6 (>= 2.5.1), dplyr (>=
1.0.1), MASS (>= 7.3-51.6), nloptr (>= 1.2.2.2), e1071 (>=
1.7-9), stats (>= 4.0.2), graphics (>= 4.0.2), ggplot2 (>=
3.3.2)

RdMacros Rdpack

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Spencer Giddens [aut, cre],
Fang Liu [ctb]

1

https://doi.org/10.1007/11681878_14
https://proceedings.mlr.press/v23/kifer12.html
https://jmlr.org/papers/v12/chaudhuri11a.html
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11761679_29
https://proceedings.mlr.press/v80/balle18a.html
https://doi.org/10.1109/FOCS.2007.66

2 covDP

Repository CRAN

Date/Publication 2024-10-20 04:10:05 UTC

Contents
covDP . 2
ExponentialMechanism . 4
GaussianMechanism . 5
histogramDP . 8
LaplaceMechanism . 10
LinearRegressionDP . 12
LogisticRegressionDP . 15
meanDP . 18
medianDP . 20
pooledCovDP . 21
pooledVarDP . 23
quantileDP . 25
sdDP . 27
svmDP . 28
tableDP . 33
tune_classification_model . 35
tune_linear_regression_model . 37
varDP . 39

Index 42

covDP Differentially Private Covariance

Description

This function computes the differentially private covariance of a pair of vectors at user-specified
privacy levels of epsilon and delta.

Usage

covDP(
x1,
x2,
eps,
lower.bound1,
upper.bound1,
lower.bound2,
upper.bound2,
which.sensitivity = "bounded",
mechanism = "Laplace",
delta = 0,

covDP 3

type.DP = "aDP"
)

Arguments

x1, x2 Numeric vectors whose covariance is desired.

eps Positive real number defining the epsilon privacy budget.
lower.bound1, lower.bound2

Real numbers giving the global or public lower bounds of x1 and x2, respec-
tively.

upper.bound1, upper.bound2
Real numbers giving the global or public upper bounds of x1 and x2, respec-
tively.

which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, delta)-differential privacy, but may not do so collectively and in
composition. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently
the following mechanisms are supported: {’Laplace’, ’Gaussian’, ’analytic’}.
Default is Laplace. See LaplaceMechanism and GaussianMechanism for de-
scriptions of the supported mechanisms.

delta Nonnegative real number defining the delta privacy parameter. If 0 (default),
reduces to eps-DP.

type.DP String indicating the type of differential privacy desired for the Gaussian mecha-
nism (if selected). Can be either ’pDP’ for probabilistic DP (Machanavajjhala et
al. 2008) or ’aDP’ for approximate DP (Dwork et al. 2006). Note that if ’aDP’
is chosen, epsilon must be strictly less than 1.

Value

Sanitized covariance based on the bounded and/or unbounded definitions of differential privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Machanavajjhala A, Kifer D, Abowd J, Gehrke J, Vilhuber L (2008). “Privacy: Theory meets
Practice on the Map.” In 2008 IEEE 24th International Conference on Data Engineering, 277-286.
doi:10.1109/ICDE.2008.4497436.

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/ICDE.2008.4497436

4 ExponentialMechanism

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Liu F (2019). “Statistical Properties of Sanitized Results from Differentially Private Laplace Mech-
anism with Univariate Bounding Constraints.” Transactions on Data Privacy, 12(3), 169-195.
http://www.tdp.cat/issues16/tdp.a316a18.pdf.

Examples

D1 <- sort(stats::rnorm(500, mean=3, sd=2))
D2 <- sort(stats::rnorm(500, mean=-1,sd=0.5))
lb1 <- -3 # 3 std devs below mean
lb2 <- -2.5 # 3 std devs below mean
ub1 <- 9 # 3 std devs above mean
ub2 <- .5 # 3 std devs above mean
covDP(D1, D2, 1, lb1, ub1, lb2, ub2)
covDP(D1, D2, .5, lb1, ub1, lb2, ub2, which.sensitivity='unbounded',

mechanism='Gaussian', delta=0.01)

ExponentialMechanism Exponential Mechanism

Description

This function implements the exponential mechanism for differential privacy by selecting the index
of a vector of candidates to return according to a user-specified vector of utility function values, ep-
silon, and global sensitivity. Sensitivity calculated based either on bounded or unbounded differen-
tial privacy can be used (Kifer and Machanavajjhala 2011). If measure is provided, the probabilities
of selecting each value are scaled according to the values in measure. If candidates is provided, the
function returns the value of candidates at the selected index, rather than the index itself.

Usage

ExponentialMechanism(
utility,
eps,
sensitivity,
measure = NULL,
candidates = NULL

)

Arguments

utility Numeric vector giving the utilities of the possible values.

eps Positive real number defining the epsilon privacy budget.

https://doi.org/10.1007/11761679_29
http://www.tdp.cat/issues16/tdp.a316a18.pdf

GaussianMechanism 5

sensitivity Real number corresponding to the l1-global sensitivity of the function generat-
ing utility.

measure Optional numeric vector of scaling measures for the probabilities of selecting
each value. Should be same size as utility. Defaults to uniform scaling.

candidates Optional vector of candidates of same size as utility. If given, the function re-
turns the candidate at the selected index rather than the index itself.

Value

Indices (or values if candidates given) selected by the mechanism based on the bounded and/or
unbounded definitions of differential privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

McSherry F, Talwar K (2007). “Mechanism Design via Differential Privacy.” In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), 94-103. doi:10.1109/FOCS.2007.66.

Examples

candidates <- c('a','b','c','d','e','f','g')
Release index
idx <- ExponentialMechanism(c(0,1,2,3,2,1,0), 1, 1)
candidates[idx] # Randomly chosen candidate

Release candidate
ExponentialMechanism(c(0,1,2,3,2,1,0), 1, .5, measure=c(1,1,2,1,2,1,1),

candidates=candidates)

GaussianMechanism Gaussian Mechanism

Description

This function implements the Gaussian mechanism for differential privacy by adding noise to the
true value(s) of a function according to specified values of epsilon, delta, and l2-global sensitivity(-
ies). Global sensitivity calculated based either on bounded or unbounded differential privacy can be
used (Kifer and Machanavajjhala 2011). If true.values is a vector, the provided epsilon and delta are
divided such that (epsilon, delta)-level differential privacy is satisfied across all function values. In
the case that each element of true.values comes from its own function with different corresponding
sensitivities, a vector of sensitivities may be provided. In this case, if desired, the user can specify
how to divide epsilon and delta among the function values using alloc.proportions.

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/FOCS.2007.66

6 GaussianMechanism

Usage

GaussianMechanism(
true.values,
eps,
delta,
sensitivities,
type.DP = "aDP",
alloc.proportions = NULL,
analytic = FALSE,
tol = 1e-12

)

Arguments

true.values Real number or numeric vector corresponding to the true value(s) of the desired
function.

eps Positive real number defining the epsilon privacy parameter.

delta Positive real number defining the delta privacy parameter.

sensitivities Real number or numeric vector corresponding to the l2-global sensitivity(-ies)
of the function(s) generating true.values. This value must be of length 1 or of
the same length as true.values. If it is of length 1 and true.values is a vector,
this indicates that the given sensitivity applies simultaneously to all elements of
true.values and that the privacy budget need not be allocated (alloc.proportions
is unused in this case). If it is of the same length as true.values, this indicates
that each element of true.values comes from its own function with different cor-
responding sensitivities. In this case, the l2-norm of the provided sensitivities is
used to generate the Gaussian noise.

type.DP String indicating the type of differential privacy desired for the Gaussian mech-
anism. Can be either ’pDP’ for probabilistic DP (Liu 2019) or ’aDP’ for ap-
proximate DP (Dwork et al. 2006). Note that if ’aDP’ is chosen, epsilon must
be strictly less than 1.

alloc.proportions

Optional numeric vector giving the allocation proportions of epsilon and delta
to the function values in the case of vector-valued sensitivities. For example,
if sensitivities is of length two and alloc.proportions = c(.75, .25), then 75%
of the privacy budget eps (and 75% of delta) is allocated to the noise compu-
tation for the first element of true.values, and the remaining 25% is allocated
to the noise computation for the second element of true.values. This ensures
(eps, delta)-level privacy across all computations. Input does not need to be
normalized, meaning alloc.proportions = c(3,1) produces the same result as the
example above.

analytic Indicates whether to use the analytic Gaussian mechanism to compute the noise
scale (Balle and Wang 2018). Defaults to FALSE.

tol Error tolerance for binary search used in determining the noise parameter for the
analytic Gaussian mechanism. Unused if analytic is FALSE. Defaults to 1e-12.

GaussianMechanism 7

Value

Sanitized function values based on the bounded and/or unbounded definitions of differential privacy,
sanitized via the Gaussian mechanism.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Balle B, Wang Y (2018). “Improving the Gaussian Mechanism for Differential Privacy: Analytical
Calibration and Optimal Denoising.” In Dy J, Krause A (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, 394–
403. https://proceedings.mlr.press/v80/balle18a.html.

Liu F (2019). “Generalized Gaussian Mechanism for Differential Privacy.” IEEE Transactions
on Knowledge and Data Engineering, 31(4), 747-756. https://doi.org/10.1109/TKDE.2018.
2845388.

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Examples

Simulate dataset
n <- 100
c0 <- 5 # Lower bound
c1 <- 10 # Upper bound
D1 <- stats::runif(n, c0, c1)

Privacy budget
epsilon <- 0.9 # eps must be in (0, 1) for approximate differential privacy
delta <- 0.01
sensitivity <- (c1-c0)/n

Approximate differential privacy
private.mean.approx <- GaussianMechanism(mean(D1), epsilon, delta,

sensitivity)
private.mean.approx

Probabilistic differential privacy
private.mean.prob <- GaussianMechanism(mean(D1), epsilon, delta, sensitivity,

type.DP = 'pDP')
private.mean.prob

Analytic Gaussian mechanism
epsilon <- 1.1 # epsilon can be > 1 for analytic Gaussian mechanism
private.mean.analytic <- GaussianMechanism(mean(D1), epsilon, delta,

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345
https://proceedings.mlr.press/v80/balle18a.html
https://doi.org/10.1109/TKDE.2018.2845388
https://doi.org/10.1109/TKDE.2018.2845388
https://doi.org/10.1007/11761679_29

8 histogramDP

sensitivity, analytic=TRUE)
private.mean.analytic

Simulate second dataset
d0 <- 3 # Lower bound
d1 <- 6 # Upper bound
D2 <- stats::runif(n, d0, d1)
D <- matrix(c(D1,D2),ncol=2)
sensitivities <- c((c1-c0)/n, (d1-d0)/n)
epsilon <- 0.9 # Total privacy budget for all means
delta <- 0.01

Here, sensitivities are summed and the result is used to generate Laplace
noise. This is essentially the same as allocating epsilon proportional to
the corresponding sensitivity. The results satisfy (0.9,0.01)-approximate
differential privacy.
private.means <- GaussianMechanism(apply(D, 2, mean), epsilon, delta,

sensitivities)
private.means

Here, privacy budget is explicitly split so that 75% is given to the first
vector element and 25% is given to the second.
private.means <- GaussianMechanism(apply(D, 2, mean), epsilon, delta,

sensitivities,
alloc.proportions = c(0.75, 0.25))

private.means

histogramDP Differentially Private Histogram

Description

This function computes a differentially private histogram from a vector at user-specified privacy
levels of epsilon and delta. A histogram object is returned with sanitized values for the counts for
easy plotting.

Usage

histogramDP(
x,
eps,
lower.bound,
upper.bound,
breaks = "Sturges",
normalize = FALSE,
which.sensitivity = "bounded",
mechanism = "Laplace",
delta = 0,

histogramDP 9

type.DP = "aDP",
allow.negative = FALSE

)

Arguments

x Numeric vector from which the histogram will be formed.

eps Positive real number defining the epsilon privacy budget.

lower.bound Scalar representing the global or public lower bound on values of x.

upper.bound Scalar representing the global or public upper bound on values of x.

breaks Identical to the argument with the same name from hist.

normalize Logical value. If FALSE (default), returned histogram counts correspond to
frequencies. If TRUE, returned histogram counts correspond to densities (i.e.
area of histogram is one).

which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, delta)-differential privacy, but may not do so collectively and in
composition. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently
the following mechanisms are supported: {’Laplace’, ’Gaussian’, ’analytic’}.
Default is Laplace. See LaplaceMechanism and GaussianMechanism for de-
scriptions of the supported mechanisms.

delta Nonnegative real number defining the delta privacy parameter. If 0 (default),
reduces to eps-DP.

type.DP String indicating the type of differential privacy desired for the Gaussian mecha-
nism (if selected). Can be either ’pDP’ for probabilistic DP (Machanavajjhala et
al. 2008) or ’aDP’ for approximate DP (Dwork et al. 2006). Note that if ’aDP’
is chosen, epsilon must be strictly less than 1.

allow.negative Logical value. If FALSE (default), any negative values in the sanitized his-
togram due to the added noise will be set to 0. If TRUE, the negative values (if
any) will be returned.

Value

Sanitized histogram based on the bounded and/or unbounded definitions of differential privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

https://doi.org/10.1007/11681878_14

10 LaplaceMechanism

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Machanavajjhala A, Kifer D, Abowd J, Gehrke J, Vilhuber L (2008). “Privacy: Theory meets
Practice on the Map.” In 2008 IEEE 24th International Conference on Data Engineering, 277-286.
doi:10.1109/ICDE.2008.4497436.

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Examples

x <- stats::rnorm(500)
graphics::hist(x) # Non-private histogram
result <- histogramDP(x, 1, -3, 3)
plot(result) # Private histogram

graphics::hist(x, freq=FALSE) # Normalized non-private histogram
result <- histogramDP(x, .5, -3, 3, normalize=TRUE,

which.sensitivity='unbounded', mechanism='Gaussian', delta=0.01,
allow.negative=TRUE)

plot(result) # Normalized private histogram (note negative values allowed)

LaplaceMechanism Laplace Mechanism

Description

This function implements the Laplace mechanism for differential privacy by adding noise to the
true value(s) of a function according to specified values of epsilon and l1-global sensitivity(-ies).
Global sensitivity calculated based either on bounded or unbounded differential privacy can be used
(Kifer and Machanavajjhala 2011). If true.values is a vector, the provided epsilon is divided such
that epsilon-differential privacy is satisfied across all function values. In the case that each element
of true.values comes from its own function with different corresponding sensitivities, a vector of
sensitivities may be provided. In this case, if desired, the user can specify how to divide epsilon
among the function values using alloc.proportions.

Usage

LaplaceMechanism(true.values, eps, sensitivities, alloc.proportions = NULL)

Arguments

true.values Real number or numeric vector corresponding to the true value(s) of the desired
function.

eps Positive real number defining the epsilon privacy parameter.

https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1007/11761679_29

LaplaceMechanism 11

sensitivities Real number or numeric vector corresponding to the l1-global sensitivity(-ies)
of the function(s) generating true.values. This value must be of length 1 or of
the same length as true.values. If it is of length 1 and true.values is a vector,
this indicates that the given sensitivity applies simultaneously to all elements of
true.values and that the privacy budget need not be allocated (alloc.proportions
is unused in this case). If it is of the same length as true.values, this indicates
that each element of true.values comes from its own function with different cor-
responding sensitivities. In this case, the l1-norm of the provided sensitivities is
used to generate the Laplace noise.

alloc.proportions

Optional numeric vector giving the allocation proportions of epsilon to the func-
tion values in the case of vector-valued sensitivities. For example, if sensitivities
is of length two and alloc.proportions = c(.75, .25), then 75% of the privacy bud-
get eps is allocated to the noise computation for the first element of true.values,
and the remaining 25% is allocated to the noise computation for the second el-
ement of true.values. This ensures eps-level privacy across all computations.
Input does not need to be normalized, meaning alloc.proportions = c(3,1) pro-
duces the same result as the example above.

Value

Sanitized function values based on the bounded and/or unbounded definitions of differential privacy,
sanitized via the Laplace mechanism.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Examples

Simulate dataset
n <- 100
c0 <- 5 # Lower bound
c1 <- 10 # Upper bound
D1 <- stats::runif(n, c0, c1)
epsilon <- 1 # Privacy budget
sensitivity <- (c1-c0)/n

private.mean <- LaplaceMechanism(mean(D1), epsilon, sensitivity)
private.mean

Simulate second dataset
d0 <- 3 # Lower bound
d1 <- 6 # Upper bound
D2 <- stats::runif(n, d0, d1)

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345

12 LinearRegressionDP

D <- matrix(c(D1,D2),ncol=2)
sensitivities <- c((c1-c0)/n, (d1-d0)/n)
epsilon <- 1 # Total privacy budget for all means

Here, sensitivities are summed and the result is used to generate Laplace
noise. This is essentially the same as allocating epsilon proportional to
the corresponding sensitivity. The results satisfy 1-differential privacy.
private.means <- LaplaceMechanism(apply(D, 2, mean), epsilon, sensitivities)
private.means

Here, privacy budget is explicitly split so that 75% is given to the first
vector element and 25% is given to the second.
private.means <- LaplaceMechanism(apply(D, 2, mean), epsilon, sensitivities,

alloc.proportions = c(0.75, 0.25))
private.means

LinearRegressionDP Privacy-preserving Linear Regression

Description

This class implements differentially private linear regression using the objective perturbation tech-
nique (Kifer et al. 2012).

Details

To use this class for linear regression, first use the new method to construct an object of this class
with the desired function values and hyperparameters. After constructing the object, the fit method
can be applied with a provided dataset and data bounds to fit the model. In fitting, the model stores
a vector of coefficients coeff which satisfy differential privacy. These can be released directly, or
used in conjunction with the predict method to privately predict the outcomes of new datapoints.

Note that in order to guarantee differential privacy for linear regression, certain constraints must
be satisfied for the values used to construct the object, as well as for the data used to fit. The
regularizer must be convex. Additionally, it is assumed that if x represents a single row of the dataset
X, then the l2-norm of x is at most p for all x, where p is the number of predictors (including any
possible intercept term). In order to ensure this constraint is satisfied, the dataset is preprocessed and
scaled, and the resulting coefficients are postprocessed and un-scaled so that the stored coefficients
correspond to the original data. Due to this constraint on x, it is best to avoid using an intercept
term in the model whenever possible. If an intercept term must be used, the issue can be partially
circumvented by adding a constant column to X before fitting the model, which will be scaled along
with the rest of X. The fit method contains functionality to add a column of constant 1s to X before
scaling, if desired.

Super class

DPpack::EmpiricalRiskMinimizationDP.KST -> LinearRegressionDP

LinearRegressionDP 13

Methods

Public methods:
• LinearRegressionDP$new()

• LinearRegressionDP$fit()

• LinearRegressionDP$clone()

Method new(): Create a new LinearRegressionDP object.

Usage:
LinearRegressionDP$new(regularizer, eps, delta, gamma, regularizer.gr = NULL)

Arguments:

regularizer String or regularization function. If a string, must be ’l2’, indicating to use l2
regularization. If a function, must have form regularizer(coeff), where coeff is a vec-
tor or matrix, and return the value of the regularizer at coeff. See regularizer.l2 for an
example. Additionally, in order to ensure differential privacy, the function must be convex.

eps Positive real number defining the epsilon privacy budget. If set to Inf, runs algorithm
without differential privacy.

delta Nonnegative real number defining the delta privacy parameter. If 0, reduces to pure
eps-DP.

gamma Nonnegative real number representing the regularization constant.
regularizer.gr Optional function representing the gradient of the regularization function

with respect to coeff and of the form regularizer.gr(coeff). Should return a vector.
See regularizer.gr.l2 for an example. If regularizer is given as a string, this value
is ignored. If not given and regularizer is a function, non-gradient based optimization
methods are used to compute the coefficient values in fitting the model.

Returns: A new LinearRegressionDP object.

Method fit(): Fit the differentially private linear regression model. The function runs the
objective perturbation algorithm (Kifer et al. 2012) to generate an objective function. A numer-
ical optimization method is then run to find optimal coefficients for fitting the model given the
training data and hyperparameters. The nloptr function is used. If regularizer is given as
’l2’ or if regularizer.gr is given in the construction of the object, the gradient of the objec-
tive function and the Jacobian of the constraint function are utilized for the algorithm, and the
NLOPT_LD_MMA method is used. If this is not the case, the NLOPT_LN_COBYLA method is
used. The resulting privacy-preserving coefficients are stored in coeff.

Usage:
LinearRegressionDP$fit(X, y, upper.bounds, lower.bounds, add.bias = FALSE)

Arguments:

X Dataframe of data to be fit.
y Vector or matrix of true values for each row of X.
upper.bounds Numeric vector of length ncol(X)+1 giving upper bounds on the values in each

column of X and the values of y. The last value in the vector is assumed to be the upper
bound on y, while the first ncol(X) values are assumed to be in the same order as the corre-
sponding columns of X. Any value in the columns of X and in y larger than the corresponding
upper bound is clipped at the bound.

14 LinearRegressionDP

lower.bounds Numeric vector of length ncol(X)+1 giving lower bounds on the values in each
column of X and the values of y. The last value in the vector is assumed to be the lower
bound on y, while the first ncol(X) values are assumed to be in the same order as the corre-
sponding columns of X. Any value in the columns of X and in y larger than the corresponding
lower bound is clipped at the bound.

add.bias Boolean indicating whether to add a bias term to X. Defaults to FALSE.

Method clone(): The objects of this class are cloneable with this method.
Usage:
LinearRegressionDP$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Kifer D, Smith A, Thakurta A (2012). “Private Convex Empirical Risk Minimization and High-
dimensional Regression.” In Mannor S, Srebro N, Williamson RC (eds.), Proceedings of the 25th
Annual Conference on Learning Theory, volume 23 of Proceedings of Machine Learning Research,
25.1–25.40. https://proceedings.mlr.press/v23/kifer12.html.

Examples

Build example dataset
n <- 500
X <- data.frame(X=seq(-1,1,length.out = n))
true.theta <- c(-.3,.5) # First element is bias term
p <- length(true.theta)
y <- true.theta[1] + as.matrix(X)%*%true.theta[2:p] + stats::rnorm(n=n,sd=.1)

Construct object for linear regression
regularizer <- 'l2' # Alternatively, function(coeff) coeff%*%coeff/2
eps <- 1
delta <- 0 # Indicates to use pure eps-DP
gamma <- 1
regularizer.gr <- function(coeff) coeff

lrdp <- LinearRegressionDP$new('l2', eps, delta, gamma, regularizer.gr)

Fit with data
We must assume y is a matrix with values between -p and p (-2 and 2
for this example)
upper.bounds <- c(1, 2) # Bounds for X and y
lower.bounds <- c(-1,-2) # Bounds for X and y
lrdp$fit(X, y, upper.bounds, lower.bounds, add.bias=TRUE)
lrdp$coeff # Gets private coefficients

Predict new data points
Build a test dataset
Xtest <- data.frame(X=c(-.5, -.25, .1, .4))
predicted.y <- lrdp$predict(Xtest, add.bias=TRUE)

https://proceedings.mlr.press/v23/kifer12.html

LogisticRegressionDP 15

LogisticRegressionDP Privacy-preserving Logistic Regression

Description

This class implements differentially private logistic regression (Chaudhuri et al. 2011). Either the
output or the objective perturbation method can be used.

Details

To use this class for logistic regression, first use the new method to construct an object of this class
with the desired function values and hyperparameters. After constructing the object, the fit method
can be applied with a provided dataset and data bounds to fit the model. In fitting, the model stores
a vector of coefficients coeff which satisfy differential privacy. These can be released directly, or
used in conjunction with the predict method to privately predict the outcomes of new datapoints.

Note that in order to guarantee differential privacy for logistic regression, certain constraints must
be satisfied for the values used to construct the object, as well as for the data used to fit. These
conditions depend on the chosen perturbation method. The regularizer must be 1-strongly convex
and differentiable. It also must be doubly differentiable if objective perturbation is chosen. Addi-
tionally, it is assumed that if x represents a single row of the dataset X, then the l2-norm of x is
at most 1 for all x. In order to ensure this constraint is satisfied, the dataset is preprocessed and
scaled, and the resulting coefficients are postprocessed and un-scaled so that the stored coefficients
correspond to the original data. Due to this constraint on x, it is best to avoid using a bias term in
the model whenever possible. If a bias term must be used, the issue can be partially circumvented
by adding a constant column to X before fitting the model, which will be scaled along with the rest
of X. The fit method contains functionality to add a column of constant 1s to X before scaling, if
desired.

Super class

DPpack::EmpiricalRiskMinimizationDP.CMS -> LogisticRegressionDP

Methods

Public methods:
• LogisticRegressionDP$new()

• LogisticRegressionDP$fit()

• LogisticRegressionDP$predict()

• LogisticRegressionDP$clone()

Method new(): Create a new LogisticRegressionDP object.

Usage:
LogisticRegressionDP$new(
regularizer,
eps,
gamma,

16 LogisticRegressionDP

perturbation.method = "objective",
regularizer.gr = NULL

)

Arguments:
regularizer String or regularization function. If a string, must be ’l2’, indicating to use l2 reg-

ularization. If a function, must have form regularizer(coeff), where coeff is a vector
or matrix, and return the value of the regularizer at coeff. See regularizer.l2 for an ex-
ample. Additionally, in order to ensure differential privacy, the function must be 1-strongly
convex and doubly differentiable.

eps Positive real number defining the epsilon privacy budget. If set to Inf, runs algorithm
without differential privacy.

gamma Nonnegative real number representing the regularization constant.
perturbation.method String indicating whether to use the ’output’ or the ’objective’ pertur-

bation methods (Chaudhuri et al. 2011). Defaults to ’objective’.
regularizer.gr Optional function representing the gradient of the regularization function

with respect to coeff and of the form regularizer.gr(coeff). Should return a vector.
See regularizer.gr.l2 for an example. If regularizer is given as a string, this value
is ignored. If not given and regularizer is a function, non-gradient based optimization
methods are used to compute the coefficient values in fitting the model.

Returns: A new LogisticRegressionDP object.

Method fit(): Fit the differentially private logistic regression model. This method runs either
the output perturbation or the objective perturbation algorithm (Chaudhuri et al. 2011), depending
on the value of perturbation.method used to construct the object, to generate an objective func-
tion. A numerical optimization method is then run to find optimal coefficients for fitting the model
given the training data and hyperparameters. The built-in optim function using the "BFGS" op-
timization method is used. If regularizer is given as ’l2’ or if regularizer.gr is given in
the construction of the object, the gradient of the objective function is utilized by optim as well.
Otherwise, non-gradient based optimization methods are used. The resulting privacy-preserving
coefficients are stored in coeff.

Usage:
LogisticRegressionDP$fit(X, y, upper.bounds, lower.bounds, add.bias = FALSE)

Arguments:
X Dataframe of data to be fit.
y Vector or matrix of true labels for each row of X.
upper.bounds Numeric vector of length ncol(X) giving upper bounds on the values in each

column of X. The ncol(X) values are assumed to be in the same order as the corresponding
columns of X. Any value in the columns of X larger than the corresponding upper bound is
clipped at the bound.

lower.bounds Numeric vector of length ncol(X) giving lower bounds on the values in each
column of X. The ncol(X) values are assumed to be in the same order as the corresponding
columns of X. Any value in the columns of X larger than the corresponding upper bound is
clipped at the bound.

add.bias Boolean indicating whether to add a bias term to X. Defaults to FALSE.

Method predict(): Predict label(s) for given X using the fitted coefficients.

LogisticRegressionDP 17

Usage:
LogisticRegressionDP$predict(X, add.bias = FALSE, raw.value = FALSE)

Arguments:
X Dataframe of data on which to make predictions. Must be of same form as X used to fit

coefficients.
add.bias Boolean indicating whether to add a bias term to X. Defaults to FALSE. If add.bias

was set to TRUE when fitting the coefficients, add.bias should be set to TRUE for predic-
tions.

raw.value Boolean indicating whether to return the raw predicted value or the rounded class
label. If FALSE (default), outputs the predicted labels 0 or 1. If TRUE, returns the raw
score from the logistic regression.

Returns: Matrix of predicted labels or scores corresponding to each row of X.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LogisticRegressionDP$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Chaudhuri K, Monteleoni C, Sarwate AD (2011). “Differentially Private Empirical Risk Minimiza-
tion.” Journal of Machine Learning Research, 12(29), 1069-1109. https://jmlr.org/papers/
v12/chaudhuri11a.html.

Chaudhuri K, Monteleoni C (2009). “Privacy-preserving logistic regression.” In Koller D, Schuur-
mans D, Bengio Y, Bottou L (eds.), Advances in Neural Information Processing Systems, volume
21. https://proceedings.neurips.cc/paper/2008/file/8065d07da4a77621450aa84fee5656d9-Paper.
pdf.

Examples

Build train dataset X and y, and test dataset Xtest and ytest
N <- 200
K <- 2
X <- data.frame()
y <- data.frame()
for (j in (1:K)){

t <- seq(-.25, .25, length.out = N)
if (j==1) m <- stats::rnorm(N,-.2, .1)
if (j==2) m <- stats::rnorm(N, .2, .1)
Xtemp <- data.frame(x1 = 3*t , x2 = m - t)
ytemp <- data.frame(matrix(j-1, N, 1))
X <- rbind(X, Xtemp)
y <- rbind(y, ytemp)

}
Xtest <- X[seq(1,(N*K),10),]
ytest <- y[seq(1,(N*K),10),,drop=FALSE]
X <- X[-seq(1,(N*K),10),]

https://jmlr.org/papers/v12/chaudhuri11a.html
https://jmlr.org/papers/v12/chaudhuri11a.html
https://proceedings.neurips.cc/paper/2008/file/8065d07da4a77621450aa84fee5656d9-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/8065d07da4a77621450aa84fee5656d9-Paper.pdf

18 meanDP

y <- y[-seq(1,(N*K),10),,drop=FALSE]

Construct object for logistic regression
regularizer <- 'l2' # Alternatively, function(coeff) coeff%*%coeff/2
eps <- 1
gamma <- 1
lrdp <- LogisticRegressionDP$new(regularizer, eps, gamma)

Fit with data
Bounds for X based on construction
upper.bounds <- c(1, 1)
lower.bounds <- c(-1,-1)
lrdp$fit(X, y, upper.bounds, lower.bounds) # No bias term
lrdp$coeff # Gets private coefficients

Predict new data points
predicted.y <- lrdp$predict(Xtest)
n.errors <- sum(predicted.y!=ytest)

meanDP Differentially Private Mean

Description

This function computes the differentially private mean of a given dataset at user-specified privacy
levels of epsilon and delta.

Usage

meanDP(
x,
eps,
lower.bound,
upper.bound,
which.sensitivity = "bounded",
mechanism = "Laplace",
delta = 0,
type.DP = "aDP"

)

Arguments

x Dataset whose mean is desired.

eps Positive real number defining the epsilon privacy budget.

lower.bound Scalar representing the global or public lower bound on values of x.

upper.bound Scalar representing the global or public upper bound on values of x.

meanDP 19

which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, delta)-differential privacy, but may not do so collectively and in
composition. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently
the following mechanisms are supported: {’Laplace’, ’Gaussian’, ’analytic’}.
Default is Laplace. See LaplaceMechanism and GaussianMechanism for de-
scriptions of the supported mechanisms.

delta Nonnegative real number defining the delta privacy parameter. If 0 (default),
reduces to eps-DP.

type.DP String indicating the type of differential privacy desired for the Gaussian mecha-
nism (if selected). Can be either ’pDP’ for probabilistic DP (Machanavajjhala et
al. 2008) or ’aDP’ for approximate DP (Dwork et al. 2006). Note that if ’aDP’
is chosen, epsilon must be strictly less than 1.

Value

Sanitized mean based on the bounded and/or unbounded definitions of differential privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Machanavajjhala A, Kifer D, Abowd J, Gehrke J, Vilhuber L (2008). “Privacy: Theory meets
Practice on the Map.” In 2008 IEEE 24th International Conference on Data Engineering, 277-286.
doi:10.1109/ICDE.2008.4497436.

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Examples

D <- stats::rnorm(500, mean=3, sd=2)
lb <- -3 # 3 std devs below mean
ub <- 9 # 3 std devs above mean
meanDP(D, 1, lb, ub)
meanDP(D, .5, lb, ub, which.sensitivity='unbounded', mechanism='Gaussian',

delta=0.01)

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1007/11761679_29

20 medianDP

medianDP Differentially Private Median

Description

This function computes the differentially private median of an input vector at a user-specified pri-
vacy level of epsilon.

Usage

medianDP(
x,
eps,
lower.bound,
upper.bound,
which.sensitivity = "bounded",
mechanism = "exponential"

)

Arguments

x Numeric vector of which the median will be taken.

eps Positive real number defining the epsilon privacy budget.

lower.bound Real number giving the global or public lower bound of x.

upper.bound Real number giving the global or public upper bound of x.
which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, 0)-differential privacy, but may not do so collectively and in com-
position. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently the
following mechanisms are supported: {’exponential’}. See ExponentialMechanism
for a description of the supported mechanisms.

Value

Sanitized median based on the bounded and/or unbounded definitions of differential privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

https://doi.org/10.1007/11681878_14

pooledCovDP 21

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Smith A (2011). “Privacy-Preserving Statistical Estimation with Optimal Convergence Rates.”
In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11,
813–822. ISBN 9781450306911, doi:10.1145/1993636.1993743.

Examples

D <- stats::rnorm(500)
lower.bound <- -3 # 3 standard deviations below mean
upper.bound <- 3 # 3 standard deviations above mean

eps <- 1
Get median satisfying pure 1-differential privacy
private.median <- medianDP(D, eps, lower.bound, upper.bound)
private.median

pooledCovDP Differentially Private Pooled Covariance

Description

This function computes the differentially private pooled covariance from two or more two-column
matrices of data at user-specified privacy levels of epsilon and delta.

Usage

pooledCovDP(
...,
eps = 1,
lower.bound1,
upper.bound1,
lower.bound2,
upper.bound2,
which.sensitivity = "bounded",
mechanism = "Laplace",
delta = 0,
type.DP = "aDP",
approx.n.max = FALSE

)

Arguments

... Two or more matrices, each with two columns from which to compute the pooled
covariance.

eps Positive real number defining the epsilon privacy budget.

https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1145/1993636.1993743

22 pooledCovDP

lower.bound1, lower.bound2
Real numbers giving the global or public lower bounds over the first and second
columns of all input data, respectively.

upper.bound1, upper.bound2
Real numbers giving the global or public upper bounds over the first and second
columns of all input data, respectively.

which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, delta)-differential privacy, but may not do so collectively and in
composition. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently
the following mechanisms are supported: {’Laplace’, ’Gaussian’, ’analytic’}.
Default is Laplace. See LaplaceMechanism and GaussianMechanism for de-
scriptions of the supported mechanisms.

delta Nonnegative real number defining the delta privacy parameter. If 0 (default),
reduces to eps-DP.

type.DP String indicating the type of differential privacy desired for the Gaussian mecha-
nism (if selected). Can be either ’pDP’ for probabilistic DP (Machanavajjhala et
al. 2008) or ’aDP’ for approximate DP (Dwork et al. 2006). Note that if ’aDP’
is chosen, epsilon must be strictly less than 1.

approx.n.max Logical indicating whether to approximate n.max (defined to be the length of
the largest input vector) in the computation of the global sensitivity based on the
upper and lower bounds of the data (Liu 2019). Approximation is best if n.max
is very large.

Value

Sanitized pooled covariance based on the bounded and/or unbounded definitions of differential
privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Machanavajjhala A, Kifer D, Abowd J, Gehrke J, Vilhuber L (2008). “Privacy: Theory meets
Practice on the Map.” In 2008 IEEE 24th International Conference on Data Engineering, 277-286.
doi:10.1109/ICDE.2008.4497436.

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/ICDE.2008.4497436

pooledVarDP 23

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Liu F (2019). “Statistical Properties of Sanitized Results from Differentially Private Laplace Mech-
anism with Univariate Bounding Constraints.” Transactions on Data Privacy, 12(3), 169-195.
http://www.tdp.cat/issues16/tdp.a316a18.pdf.

Examples

Build datasets
D1 <- sort(stats::rnorm(500, mean=3, sd=2))
D2 <- sort(stats::rnorm(500, mean=-1, sd=0.5))
D3 <- sort(stats::rnorm(200, mean=3, sd=2))
D4 <- sort(stats::rnorm(200, mean=-1, sd=0.5))
M1 <- matrix(c(D1, D2), ncol=2)
M2 <- matrix(c(D3, D4), ncol=2)

lb1 <- -3 # 3 std devs below mean
lb2 <- -2.5 # 3 std devs below mean
ub1 <- 9 # 3 std devs above mean
ub2 <- .5 # 3 std devs above mean
Pooled covariance satisfying (1,0)-differential privacy
private.pooled.cov <- pooledCovDP(M1, M2, eps = 1, lower.bound1 = lb1,

lower.bound2 = lb2, upper.bound1 = ub1,
upper.bound2 = ub2)

private.pooled.cov

Pooled covariance satisfying approximate (0.9, 0.01)-differential privacy
and approximating n.max in the sensitivity calculation
private.pooled.cov <- pooledCovDP(M1, M2, eps = 0.9, lower.bound1 = lb1,

lower.bound2 = lb2, upper.bound1 = ub1,
upper.bound2 = ub2, mechanism = 'Gaussian',
delta = 0.01, approx.n.max = TRUE)

private.pooled.cov

pooledVarDP Differentially Private Pooled Variance

Description

This function computes the differentially private pooled variance from two or more vectors of data
at user-specified privacy levels of epsilon and delta.

Usage

pooledVarDP(
...,
eps = 1,

https://doi.org/10.1007/11761679_29
http://www.tdp.cat/issues16/tdp.a316a18.pdf

24 pooledVarDP

lower.bound,
upper.bound,
which.sensitivity = "bounded",
mechanism = "Laplace",
delta = 0,
type.DP = "aDP",
approx.n.max = FALSE

)

Arguments

... Two or more vectors from which to compute the pooled variance.
eps Positive real number defining the epsilon privacy budget.
lower.bound Real number giving the global or public lower bound of the input data.
upper.bound Real number giving the global or public upper bound of the input data.
which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, delta)-differential privacy, but may not do so collectively and in
composition. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently
the following mechanisms are supported: {’Laplace’, ’Gaussian’, ’analytic’}.
Default is Laplace. See LaplaceMechanism and GaussianMechanism for de-
scriptions of the supported mechanisms.

delta Nonnegative real number defining the delta privacy parameter. If 0 (default),
reduces to eps-DP.

type.DP String indicating the type of differential privacy desired for the Gaussian mecha-
nism (if selected). Can be either ’pDP’ for probabilistic DP (Machanavajjhala et
al. 2008) or ’aDP’ for approximate DP (Dwork et al. 2006). Note that if ’aDP’
is chosen, epsilon must be strictly less than 1.

approx.n.max Logical indicating whether to approximate n.max (defined to be the length of
the largest input vector) in the computation of the global sensitivity based on the
upper and lower bounds of the data (Liu 2019). Approximation is best if n.max
is very large.

Value

Sanitized pooled variance based on the bounded and/or unbounded definitions of differential pri-
vacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

https://doi.org/10.1007/11681878_14

quantileDP 25

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Machanavajjhala A, Kifer D, Abowd J, Gehrke J, Vilhuber L (2008). “Privacy: Theory meets
Practice on the Map.” In 2008 IEEE 24th International Conference on Data Engineering, 277-286.
doi:10.1109/ICDE.2008.4497436.

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Liu F (2019). “Statistical Properties of Sanitized Results from Differentially Private Laplace Mech-
anism with Univariate Bounding Constraints.” Transactions on Data Privacy, 12(3), 169-195.
http://www.tdp.cat/issues16/tdp.a316a18.pdf.

Examples

Build datasets
D1 <- stats::rnorm(500, mean=3, sd=2)
D2 <- stats::rnorm(200, mean=3, sd=2)
D3 <- stats::rnorm(100, mean=3, sd=2)
lower.bound <- -3 # 3 standard deviations below mean
upper.bound <- 9 # 3 standard deviations above mean

Get private pooled variance without approximating n.max
private.pooled.var <- pooledVarDP(D1, D2, D3, eps=1, lower.bound=lower.bound,

upper.bound = upper.bound)
private.pooled.var

If n.max is sensitive, we can also use
private.pooled.var <- pooledVarDP(D1, D2, D3, eps=1, lower.bound=lower.bound,

upper.bound = upper.bound,
approx.n.max = TRUE)

private.pooled.var

quantileDP Differentially Private Quantile

Description

This function computes the differentially private quantile of an input vector at a user-specified
privacy level of epsilon.

Usage

quantileDP(
x,
quant,
eps,

https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1007/11761679_29
http://www.tdp.cat/issues16/tdp.a316a18.pdf

26 quantileDP

lower.bound,
upper.bound,
which.sensitivity = "bounded",
mechanism = "exponential"

)

Arguments

x Numeric vector of which the quantile will be taken.

quant Real number between 0 and 1 indicating which quantile to return.

eps Positive real number defining the epsilon privacy budget.

lower.bound Real number giving the global or public lower bound of x.

upper.bound Real number giving the global or public upper bound of x.
which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, 0)-differential privacy, but may not do so collectively and in com-
position. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently the
following mechanisms are supported: {’exponential’}. See ExponentialMechanism
for a description of the supported mechanisms.

Value

Sanitized quantile based on the bounded and/or unbounded definitions of differential privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Smith A (2011). “Privacy-Preserving Statistical Estimation with Optimal Convergence Rates.”
In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11,
813–822. ISBN 9781450306911, doi:10.1145/1993636.1993743.

Examples

D <- stats::rnorm(500)
lower.bound <- -3 # 3 standard deviations below mean
upper.bound <- 3 # 3 standard deviations above mean

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1145/1993636.1993743

sdDP 27

quant <- 0.25
eps <- 1
Get 25th quantile satisfying pure 1-differential privacy
private.quantile <- quantileDP(D, quant, eps, lower.bound, upper.bound)
private.quantile

sdDP Differentially Private Standard Deviation

Description

This function computes the differentially private standard deviation of a given dataset at user-
specified privacy levels of epsilon and delta.

Usage

sdDP(
x,
eps,
lower.bound,
upper.bound,
which.sensitivity = "bounded",
mechanism = "Laplace",
delta = 0,
type.DP = "aDP"

)

Arguments

x Numeric vector whose variance is desired.

eps Positive real number defining the epsilon privacy budget.

lower.bound Scalar representing the global or public lower bound on values of x.

upper.bound Scalar representing the global or public upper bound on values of x.
which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, delta)-differential privacy, but may not do so collectively and in
composition. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently
the following mechanisms are supported: {’Laplace’, ’Gaussian’, ’analytic’}.
Default is Laplace. See LaplaceMechanism and GaussianMechanism for de-
scriptions of the supported mechanisms.

28 svmDP

delta Nonnegative real number defining the delta privacy parameter. If 0 (default),
reduces to eps-DP.

type.DP String indicating the type of differential privacy desired for the Gaussian mecha-
nism (if selected). Can be either ’pDP’ for probabilistic DP (Machanavajjhala et
al. 2008) or ’aDP’ for approximate DP (Dwork et al. 2006). Note that if ’aDP’
is chosen, epsilon must be strictly less than 1.

Value

Sanitized standard deviation based on the bounded and/or unbounded definitions of differential
privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Machanavajjhala A, Kifer D, Abowd J, Gehrke J, Vilhuber L (2008). “Privacy: Theory meets
Practice on the Map.” In 2008 IEEE 24th International Conference on Data Engineering, 277-286.
doi:10.1109/ICDE.2008.4497436.

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Liu F (2019). “Statistical Properties of Sanitized Results from Differentially Private Laplace Mech-
anism with Univariate Bounding Constraints.” Transactions on Data Privacy, 12(3), 169-195.
http://www.tdp.cat/issues16/tdp.a316a18.pdf.

Examples

D <- stats::rnorm(500, mean=3, sd=2)
lb <- -3 # 3 std devs below mean
ub <- 9 # 3 std devs above mean
sdDP(D, 1, lb, ub)
sdDP(D,.5, lb, ub, which.sensitivity='unbounded', mechanism='Gaussian',

delta=0.01)

svmDP Privacy-preserving Support Vector Machine

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1007/11761679_29
http://www.tdp.cat/issues16/tdp.a316a18.pdf

svmDP 29

Description

This class implements differentially private support vector machine (SVM) (Chaudhuri et al. 2011).
It can be either weighted (Yang et al. 2005) or unweighted. Either the output or the objective
perturbation method can be used for unweighted SVM, though only the output perturbation method
is currently supported for weighted SVM.

Details

To use this class for SVM, first use the new method to construct an object of this class with the
desired function values and hyperparameters, including a choice of the desired kernel. After con-
structing the object, the fit method can be applied to fit the model with a provided dataset, data
bounds, and optional observation weights and weight upper bound. In fitting, the model stores a
vector of coefficients coeff which satisfy differential privacy. Additionally, if a nonlinear kernel
is chosen, the models stores a mapping function from the input data X to a higher dimensional
embedding V in the form of a method XtoV as required (Chaudhuri et al. 2011). These can be
released directly, or used in conjunction with the predict method to privately predict the label of
new datapoints. Note that the mapping function XtoV is based on an approximation method via
Fourier transforms (Rahimi and Recht 2007; Rahimi and Recht 2008).

Note that in order to guarantee differential privacy for the SVM model, certain constraints must
be satisfied for the values used to construct the object, as well as for the data used to fit. These
conditions depend on the chosen perturbation method. First, the loss function is assumed to be
differentiable (and doubly differentiable if the objective perturbation method is used). The hinge
loss, which is typically used for SVM, is not differentiable at 1. Thus, to satisfy this constraint, this
class utilizes the Huber loss, a smooth approximation to the hinge loss (Chapelle 2007). The level
of approximation to the hinge loss is determined by a user-specified constant, h, which defaults to
0.5, a typical value. Additionally, the regularizer must be 1-strongly convex and differentiable. It
also must be doubly differentiable if objective perturbation is chosen. If weighted SVM is desired,
the provided weights must be nonnegative and bounded above by a global or public value, which
must also be provided.

Finally, it is assumed that if x represents a single row of the dataset X, then the l2-norm of x is
at most 1 for all x. In order to ensure this constraint is satisfied, the dataset is preprocessed and
scaled, and the resulting coefficients are postprocessed and un-scaled so that the stored coefficients
correspond to the original data. Due to this constraint on x, it is best to avoid using a bias term in
the model whenever possible. If a bias term must be used, the issue can be partially circumvented
by adding a constant column to X before fitting the model, which will be scaled along with the rest
of X. The fit method contains functionality to add a column of constant 1s to X before scaling, if
desired.

Super classes

DPpack::EmpiricalRiskMinimizationDP.CMS -> DPpack::WeightedERMDP.CMS -> svmDP

Methods

Public methods:

• svmDP$new()

• svmDP$fit()

30 svmDP

• svmDP$XtoV()

• svmDP$predict()

• svmDP$clone()

Method new(): Create a new svmDP object.

Usage:
svmDP$new(
regularizer,
eps,
gamma,
perturbation.method = "objective",
kernel = "linear",
D = NULL,
kernel.param = NULL,
regularizer.gr = NULL,
huber.h = 0.5

)

Arguments:

regularizer String or regularization function. If a string, must be ’l2’, indicating to use l2 reg-
ularization. If a function, must have form regularizer(coeff), where coeff is a vector
or matrix, and return the value of the regularizer at coeff. See regularizer.l2 for an ex-
ample. Additionally, in order to ensure differential privacy, the function must be 1-strongly
convex and doubly differentiable.

eps Positive real number defining the epsilon privacy budget. If set to Inf, runs algorithm
without differential privacy.

gamma Nonnegative real number representing the regularization constant.
perturbation.method String indicating whether to use the ’output’ or the ’objective’ pertur-

bation methods (Chaudhuri et al. 2011). Defaults to ’objective’.
kernel String indicating which kernel to use for SVM. Must be one of {’linear’, ’Gaussian’}.

If ’linear’ (default), linear SVM is used. If ’Gaussian,’ uses the sampling function corre-
sponding to the Gaussian (radial) kernel approximation.

D Nonnegative integer indicating the dimensionality of the transform space approximating the
kernel if a nonlinear kernel is used. Higher values of D provide better kernel approximations
at a cost of computational efficiency. This value must be specified if a nonlinear kernel is
used.

kernel.param Positive real number corresponding to the Gaussian kernel parameter. Defaults
to 1/p, where p is the number of predictors.

regularizer.gr Optional function representing the gradient of the regularization function
with respect to coeff and of the form regularizer.gr(coeff). Should return a vector.
See regularizer.gr.l2 for an example. If regularizer is given as a string, this value
is ignored. If not given and regularizer is a function, non-gradient based optimization
methods are used to compute the coefficient values in fitting the model.

huber.h Positive real number indicating the degree to which the Huber loss approximates the
hinge loss. Defaults to 0.5 (Chapelle 2007).

Returns: A new svmDP object.

svmDP 31

Method fit(): Fit the differentially private SVM model. This method runs either the output
perturbation or the objective perturbation algorithm (Chaudhuri et al. 2011), depending on the
value of perturbation.method used to construct the object, to generate an objective function. A
numerical optimization method is then run to find optimal coefficients for fitting the model given
the training data, weights, and hyperparameters. The built-in optim function using the "BFGS"
optimization method is used. If regularizer is given as ’l2’ or if regularizer.gr is given in
the construction of the object, the gradient of the objective function is utilized by optim as well.
Otherwise, non-gradient based optimization methods are used. The resulting privacy-preserving
coefficients are stored in coeff.

Usage:
svmDP$fit(
X,
y,
upper.bounds,
lower.bounds,
add.bias = FALSE,
weights = NULL,
weights.upper.bound = NULL

)

Arguments:
X Dataframe of data to be fit.
y Vector or matrix of true labels for each row of X.
upper.bounds Numeric vector of length ncol(X) giving upper bounds on the values in each

column of X. The ncol(X) values are assumed to be in the same order as the corresponding
columns of X. Any value in the columns of X larger than the corresponding upper bound is
clipped at the bound.

lower.bounds Numeric vector of length ncol(X) giving lower bounds on the values in each
column of X. The ncol(X) values are assumed to be in the same order as the corresponding
columns of X. Any value in the columns of X larger than the corresponding upper bound is
clipped at the bound.

add.bias Boolean indicating whether to add a bias term to X. Defaults to FALSE.
weights Numeric vector of observation weights of the same length as y. If not given, no

observation weighting is performed.
weights.upper.bound Numeric value representing the global or public upper bound on the

weights. Required if weights are given.

Method XtoV(): Convert input data X into transformed data V. Uses sampled pre-filter values
and a mapping function based on the chosen kernel to produce D-dimensional data V on which to
train the model or predict future values. This method is only used if the kernel is nonlinear. See
Chaudhuri et al. (2011) for more details.

Usage:
svmDP$XtoV(X)

Arguments:
X Matrix corresponding to the original dataset.

Returns: Matrix V of size n by D representing the transformed dataset, where n is the number
of rows of X, and D is the provided transformed space dimension.

32 svmDP

Method predict(): Predict label(s) for given X using the fitted coefficients.

Usage:
svmDP$predict(X, add.bias = FALSE, raw.value = FALSE)

Arguments:

X Dataframe of data on which to make predictions. Must be of same form as X used to fit
coefficients.

add.bias Boolean indicating whether to add a bias term to X. Defaults to FALSE. If add.bias
was set to TRUE when fitting the coefficients, add.bias should be set to TRUE for predic-
tions.

raw.value Boolean indicating whether to return the raw predicted value or the rounded class
label. If FALSE (default), outputs the predicted labels 0 or 1. If TRUE, returns the raw
score from the SVM model.

Returns: Matrix of predicted labels or scores corresponding to each row of X.

Method clone(): The objects of this class are cloneable with this method.

Usage:
svmDP$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Chaudhuri K, Monteleoni C, Sarwate AD (2011). “Differentially Private Empirical Risk Minimiza-
tion.” Journal of Machine Learning Research, 12(29), 1069-1109. https://jmlr.org/papers/
v12/chaudhuri11a.html.

Yang X, Song Q, Cao A (2005). “Weighted support vector machine for data classification.” In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
859-864 vol. 2. doi:10.1109/IJCNN.2005.1555965.

Chapelle O (2007). “Training a Support Vector Machine in the Primal.” Neural Computation, 19(5),
1155-1178. doi:10.1162/neco.2007.19.5.1155.

Rahimi A, Recht B (2007). “Random Features for Large-Scale Kernel Machines.” In Platt J, Koller
D, Singer Y, Roweis S (eds.), Advances in Neural Information Processing Systems, volume 20.
https://proceedings.neurips.cc/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.
pdf.

Rahimi A, Recht B (2008). “Weighted Sums of Random Kitchen Sinks: Replacing minimiza-
tion with randomization in learning.” In Koller D, Schuurmans D, Bengio Y, Bottou L (eds.), Ad-
vances in Neural Information Processing Systems, volume 21. https://proceedings.neurips.
cc/paper/2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf.

Examples

Build train dataset X and y, and test dataset Xtest and ytest
N <- 400
X <- data.frame()
y <- data.frame()

https://jmlr.org/papers/v12/chaudhuri11a.html
https://jmlr.org/papers/v12/chaudhuri11a.html
https://doi.org/10.1109/IJCNN.2005.1555965
https://doi.org/10.1162/neco.2007.19.5.1155
https://proceedings.neurips.cc/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf

tableDP 33

for (i in (1:N)){
Xtemp <- data.frame(x1 = stats::rnorm(1,sd=.28) , x2 = stats::rnorm(1,sd=.28))
if (sum(Xtemp^2)<.15) ytemp <- data.frame(y=0)
else ytemp <- data.frame(y=1)
X <- rbind(X, Xtemp)
y <- rbind(y, ytemp)

}
Xtest <- X[seq(1,N,10),]
ytest <- y[seq(1,N,10),,drop=FALSE]
X <- X[-seq(1,N,10),]
y <- y[-seq(1,N,10),,drop=FALSE]

Construct object for SVM
regularizer <- 'l2' # Alternatively, function(coeff) coeff%*%coeff/2
eps <- 1
gamma <- 1
perturbation.method <- 'output'
kernel <- 'Gaussian'
D <- 20
svmdp <- svmDP$new(regularizer, eps, gamma, perturbation.method,

kernel=kernel, D=D)

Fit with data
Bounds for X based on construction
upper.bounds <- c(1, 1)
lower.bounds <- c(-1,-1)
weights <- rep(1, nrow(y)) # Uniform weighting
weights[nrow(y)] <- 0.5 # Half weight for last observation
wub <- 1 # Public upper bound for weights
svmdp$fit(X, y, upper.bounds, lower.bounds, weights=weights,

weights.upper.bound=wub) # No bias term

Predict new data points
predicted.y <- svmdp$predict(Xtest)
n.errors <- sum(predicted.y!=ytest)

tableDP Differentially Private Contingency Table

Description

This function computes a differentially private contingency table from given vectors of data at user-
specified privacy levels of epsilon and delta.

Usage

tableDP(
...,
eps = 1,

34 tableDP

which.sensitivity = "bounded",
mechanism = "Laplace",
delta = 0,
type.DP = "aDP",
allow.negative = FALSE

)

Arguments

... Vectors of data from which to create the contingency table.

eps Positive real number defining the epsilon privacy budget.
which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, delta)-differential privacy, but may not do so collectively and in
composition. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently
the following mechanisms are supported: {’Laplace’, ’Gaussian’, ’analytic’}.
Default is Laplace. See LaplaceMechanism and GaussianMechanism for de-
scriptions of the supported mechanisms.

delta Nonnegative real number defining the delta privacy parameter. If 0 (default),
reduces to eps-DP.

type.DP String indicating the type of differential privacy desired for the Gaussian mecha-
nism (if selected). Can be either ’pDP’ for probabilistic DP (Machanavajjhala et
al. 2008) or ’aDP’ for approximate DP (Dwork et al. 2006). Note that if ’aDP’
is chosen, epsilon must be strictly less than 1.

allow.negative Logical value. If FALSE (default), any negative values in the sanitized table due
to the added noise will be set to 0. If TRUE, the negative values (if any) will be
returned.

Value

Sanitized contingency table based on the bounded and/or unbounded definitions of differential pri-
vacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345

tune_classification_model 35

Machanavajjhala A, Kifer D, Abowd J, Gehrke J, Vilhuber L (2008). “Privacy: Theory meets
Practice on the Map.” In 2008 IEEE 24th International Conference on Data Engineering, 277-286.
doi:10.1109/ICDE.2008.4497436.

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Examples

x <- MASS::Cars93$Type
y <- MASS::Cars93$Origin
z <- MASS::Cars93$AirBags
tableDP(x,y,eps=1,which.sensitivity='bounded',mechanism='Laplace',

type.DP='pDP')
tableDP(x,y,z,eps=.5,which.sensitivity='unbounded',mechanism='Gaussian',

delta=0.01)

tune_classification_model

Privacy-preserving Hyperparameter Tuning for Binary Classification
Models

Description

This function implements the privacy-preserving hyperparameter tuning function for binary classi-
fication (Chaudhuri et al. 2011) using the exponential mechanism. It accepts a list of DP models
with various chosen hyperparameters, a dataset X with corresponding labels y, upper and lower
bounds on the columns of X, and a boolean indicating whether to add bias in the construction of
each of the models. The data are split into m+1 equal groups, where m is the number of models
being compared. One group is set aside as the validation group, and each of the other m groups are
used to train each of the given m models. The number of errors on the validation set is counted for
each model and used as the utility values in the exponential mechanism (ExponentialMechanism)
to select a tuned model in a privacy-preserving way.

Usage

tune_classification_model(
DPmodels,
X,
y,
upper.bounds,
lower.bounds,
add.bias = FALSE,
weights = NULL,
weights.upper.bound = NULL

)

https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1007/11761679_29

36 tune_classification_model

Arguments

DPmodels Vector of binary classification model objects, each initialized with a different
combination of hyperparameter values from the search space for tuning. Each
model should be initialized with the same epsilon privacy parameter value eps.
The tuned model satisfies eps-level differential privacy.

X Dataframe of data to be used in tuning the model. Note it is assumed the data
rows and corresponding labels are randomly shuffled.

y Vector or matrix of true labels for each row of X.

upper.bounds Numeric vector giving upper bounds on the values in each column of X. Should
be of length ncol(X). The values are assumed to be in the same order as the
corresponding columns of X. Any value in the columns of X larger than the
corresponding upper bound is clipped at the bound.

lower.bounds Numeric vector giving lower bounds on the values in each column of X. Should
be of length ncol(X). The values are assumed to be in the same order as the
corresponding columns of X. Any value in the columns of X smaller than the
corresponding lower bound is clipped at the bound.

add.bias Boolean indicating whether to add a bias term to X. Defaults to FALSE.

weights Numeric vector of observation weights of the same length as y.
weights.upper.bound

Numeric value representing the global or public upper bound on the weights.

Value

Single model object selected from the input list DPmodels with tuned parameters.

References

Chaudhuri K, Monteleoni C, Sarwate AD (2011). “Differentially Private Empirical Risk Minimiza-
tion.” Journal of Machine Learning Research, 12(29), 1069-1109. https://jmlr.org/papers/
v12/chaudhuri11a.html.

Examples

Build train dataset X and y, and test dataset Xtest and ytest
N <- 200
K <- 2
X <- data.frame()
y <- data.frame()
for (j in (1:K)){

t <- seq(-.25,.25,length.out = N)
if (j==1) m <- stats::rnorm(N,-.2,.1)
if (j==2) m <- stats::rnorm(N, .2,.1)
Xtemp <- data.frame(x1 = 3*t , x2 = m - t)
ytemp <- data.frame(matrix(j-1, N, 1))
X <- rbind(X, Xtemp)
y <- rbind(y, ytemp)

}
Xtest <- X[seq(1,(N*K),10),]

https://jmlr.org/papers/v12/chaudhuri11a.html
https://jmlr.org/papers/v12/chaudhuri11a.html

tune_linear_regression_model 37

ytest <- y[seq(1,(N*K),10),,drop=FALSE]
X <- X[-seq(1,(N*K),10),]
y <- y[-seq(1,(N*K),10),,drop=FALSE]
y <- as.matrix(y)
weights <- rep(1, nrow(y)) # Uniform weighting
weights[nrow(y)] <- 0.5 # half weight for last observation
wub <- 1 # Public upper bound for weights

Grid of possible gamma values for tuning logistic regression model
grid.search <- c(100, 1, .0001)

Construct objects for SVM parameter tuning
eps <- 1 # Privacy budget should be the same for all models
svmdp1 <- svmDP$new("l2", eps, grid.search[1], perturbation.method='output')
svmdp2 <- svmDP$new("l2", eps, grid.search[2], perturbation.method='output')
svmdp3 <- svmDP$new("l2", eps, grid.search[3], perturbation.method='output')
DPmodels <- c(svmdp1, svmdp2, svmdp3)

Tune using data and bounds for X based on its construction
upper.bounds <- c(1, 1)
lower.bounds <- c(-1,-1)
tuned.model <- tune_classification_model(DPmodels, X, y, upper.bounds,

lower.bounds, weights=weights,
weights.upper.bound=wub)

tuned.model$gamma # Gives resulting selected hyperparameter

tuned.model result can be used the same as a trained LogisticRegressionDP model
Predict new data points
predicted.y <- tuned.model$predict(Xtest)
n.errors <- sum(predicted.y!=ytest)

tune_linear_regression_model

Privacy-preserving Hyperparameter Tuning for Linear Regression
Models

Description

This function implements the privacy-preserving hyperparameter tuning function for linear regres-
sion (Kifer et al. 2012) using the exponential mechanism. It accepts a list of DP models with
various chosen hyperparameters, a dataset X with corresponding values y, upper and lower bounds
on the columns of X and the values of y, and a boolean indicating whether to add bias in the con-
struction of each of the models. The data are split into m+1 equal groups, where m is the number
of models being compared. One group is set aside as the validation group, and each of the other
m groups are used to train each of the given m models. The negative of the sum of the squared
error for each model on the validation set is used as the utility values in the exponential mechanism
(ExponentialMechanism) to select a tuned model in a privacy-preserving way.

38 tune_linear_regression_model

Usage

tune_linear_regression_model(
DPmodels,
X,
y,
upper.bounds,
lower.bounds,
add.bias = FALSE

)

Arguments

DPmodels Vector of linear regression model objects, each initialized with a different com-
bination of hyperparameter values from the search space for tuning. Each model
should be initialized with the same epsilon privacy parameter value eps. The
tuned model satisfies eps-level differential privacy.

X Dataframe of data to be used in tuning the model. Note it is assumed the data
rows and corresponding labels are randomly shuffled.

y Vector or matrix of true values for each row of X.

upper.bounds Numeric vector giving upper bounds on the values in each column of X and the
values in y. Should be length ncol(X)+1. The first ncol(X) values are assumed
to be in the same order as the corresponding columns of X, while the last value
in the vector is assumed to be the upper bound on y. Any value in the columns
of X and y larger than the corresponding upper bound is clipped at the bound.

lower.bounds Numeric vector giving lower bounds on the values in each column of X and the
values in y. Should be length ncol(X)+1. The first ncol(X) values are assumed
to be in the same order as the corresponding columns of X, while the last value
in the vector is assumed to be the lower bound on y. Any value in the columns
of X and y smaller than the corresponding lower bound is clipped at the bound.

add.bias Boolean indicating whether to add a bias term to X. Defaults to FALSE.

Value

Single model object selected from the input list DPmodels with tuned parameters.

References

Kifer D, Smith A, Thakurta A (2012). “Private Convex Empirical Risk Minimization and High-
dimensional Regression.” In Mannor S, Srebro N, Williamson RC (eds.), Proceedings of the 25th
Annual Conference on Learning Theory, volume 23 of Proceedings of Machine Learning Research,
25.1–25.40. https://proceedings.mlr.press/v23/kifer12.html.

Examples

Build example dataset
n <- 500
X <- data.frame(X=seq(-1,1,length.out = n))
true.theta <- c(-.3,.5) # First element is bias term

https://proceedings.mlr.press/v23/kifer12.html

varDP 39

p <- length(true.theta)
y <- true.theta[1] + as.matrix(X)%*%true.theta[2:p] + stats::rnorm(n=n,sd=.1)

Grid of possible gamma values for tuning linear regression model
grid.search <- c(100, 1, .0001)

Construct objects for logistic regression parameter tuning
Privacy budget should be the same for all models
eps <- 1
delta <- 0.01
linrdp1 <- LinearRegressionDP$new("l2", eps, delta, grid.search[1])
linrdp2 <- LinearRegressionDP$new("l2", eps, delta, grid.search[2])
linrdp3 <- LinearRegressionDP$new("l2", eps, delta, grid.search[3])
DPmodels <- c(linrdp1, linrdp2, linrdp3)

Tune using data and bounds for X and y based on their construction
upper.bounds <- c(1, 2) # Bounds for X and y
lower.bounds <- c(-1,-2) # Bounds for X and y
tuned.model <- tune_linear_regression_model(DPmodels, X, y, upper.bounds,

lower.bounds, add.bias=TRUE)
tuned.model$gamma # Gives resulting selected hyperparameter

tuned.model result can be used the same as a trained LogisticRegressionDP model
tuned.model$coeff # Gives coefficients for tuned model

Build a test dataset for prediction
Xtest <- data.frame(X=c(-.5, -.25, .1, .4))
predicted.y <- tuned.model$predict(Xtest, add.bias=TRUE)

varDP Differentially Private Variance

Description

This function computes the differentially private variance of a given dataset at user-specified privacy
levels of epsilon and delta.

Usage

varDP(
x,
eps,
lower.bound,
upper.bound,
which.sensitivity = "bounded",
mechanism = "Laplace",
delta = 0,
type.DP = "aDP"

)

40 varDP

Arguments

x Numeric vector whose variance is desired.

eps Positive real number defining the epsilon privacy budget.

lower.bound Scalar representing the global or public lower bound on values of x.

upper.bound Scalar representing the global or public upper bound on values of x.
which.sensitivity

String indicating which type of sensitivity to use. Can be one of {’bounded’,
’unbounded’, ’both’}. If ’bounded’ (default), returns result based on bounded
definition for differential privacy. If ’unbounded’, returns result based on un-
bounded definition. If ’both’, returns result based on both methods (Kifer and
Machanavajjhala 2011). Note that if ’both’ is chosen, each result individually
satisfies (eps, delta)-differential privacy, but may not do so collectively and in
composition. Care must be taken not to violate differential privacy in this case.

mechanism String indicating which mechanism to use for differential privacy. Currently
the following mechanisms are supported: {’Laplace’, ’Gaussian’, ’analytic’}.
Default is Laplace. See LaplaceMechanism and GaussianMechanism for de-
scriptions of the supported mechanisms.

delta Nonnegative real number defining the delta privacy parameter. If 0 (default),
reduces to eps-DP.

type.DP String indicating the type of differential privacy desired for the Gaussian mecha-
nism (if selected). Can be either ’pDP’ for probabilistic DP (Machanavajjhala et
al. 2008) or ’aDP’ for approximate DP (Dwork et al. 2006). Note that if ’aDP’
is chosen, epsilon must be strictly less than 1.

Value

Sanitized variance based on the bounded and/or unbounded definitions of differential privacy.

References

Dwork C, McSherry F, Nissim K, Smith A (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis.” In Halevi S, Rabin T (eds.), Theory of Cryptography, 265–284. ISBN 978-3-540-32732-
5, https://doi.org/10.1007/11681878_14.

Kifer D, Machanavajjhala A (2011). “No Free Lunch in Data Privacy.” In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, 193–204. ISBN
9781450306614, doi:10.1145/1989323.1989345.

Machanavajjhala A, Kifer D, Abowd J, Gehrke J, Vilhuber L (2008). “Privacy: Theory meets
Practice on the Map.” In 2008 IEEE 24th International Conference on Data Engineering, 277-286.
doi:10.1109/ICDE.2008.4497436.

Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M (2006). “Our Data, Ourselves: Privacy
Via Distributed Noise Generation.” In Vaudenay S (ed.), Advances in Cryptology - EUROCRYPT
2006, 486–503. ISBN 978-3-540-34547-3, doi:10.1007/11761679_29.

Liu F (2019). “Statistical Properties of Sanitized Results from Differentially Private Laplace Mech-
anism with Univariate Bounding Constraints.” Transactions on Data Privacy, 12(3), 169-195.
http://www.tdp.cat/issues16/tdp.a316a18.pdf.

https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1007/11761679_29
http://www.tdp.cat/issues16/tdp.a316a18.pdf

varDP 41

Examples

D <- stats::rnorm(500, mean=3, sd=2)
lb <- -3 # 3 std devs below mean
ub <- 9 # 3 std devs above mean
varDP(D, 1, lb, ub)
varDP(D,.5, lb, ub, which.sensitivity='unbounded', mechanism='Gaussian',

delta=0.01)

Index

covDP, 2

DPpack::EmpiricalRiskMinimizationDP.CMS,
15, 29

DPpack::EmpiricalRiskMinimizationDP.KST,
12

DPpack::WeightedERMDP.CMS, 29

ExponentialMechanism, 4, 20, 26, 35, 37

GaussianMechanism, 3, 5, 9, 19, 22, 24, 27,
34, 40

hist, 9
histogramDP, 8

LaplaceMechanism, 3, 9, 10, 19, 22, 24, 27,
34, 40

LinearRegressionDP, 12
LogisticRegressionDP, 15

meanDP, 18
medianDP, 20

nloptr, 13

optim, 16, 31

pooledCovDP, 21
pooledVarDP, 23

quantileDP, 25

regularizer.gr.l2, 13, 16, 30
regularizer.l2, 13, 16, 30

sdDP, 27
svmDP, 28

tableDP, 33
tune_classification_model, 35
tune_linear_regression_model, 37

varDP, 39

42

	covDP
	ExponentialMechanism
	GaussianMechanism
	histogramDP
	LaplaceMechanism
	LinearRegressionDP
	LogisticRegressionDP
	meanDP
	medianDP
	pooledCovDP
	pooledVarDP
	quantileDP
	sdDP
	svmDP
	tableDP
	tune_classification_model
	tune_linear_regression_model
	varDP
	Index

