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Abstract

This vignette describes an updated version of the R package CountsEPPM and
its use in determining maximum likelihood estimates of the parameters of extended
Poisson process models. These provide a Poisson process based family of flexible
models that can handle both underdispersion and overdispersion in observed count
data, with the negative binomial and Poisson distributions being special cases. Within
CountsEPPM models with mean and scale-factor related to covariates are constructed
to match a generalized linear model formulation. Use of the package is illustrated by
application to several published datasets.
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1 Introduction

This vignette is for version 3.1 of CountsEPPM. The updates from version 3.0 are minor. Version 3.0 is
a revised and added-to version of Smith and Faddy (2016) which related to version 2.1. The important
differences between previous versions and 3.1, 3.0 are a focus on mean and scale-factor models with variance
models dropped, the addition of generic (S3) methods, using only optim for optimization i.e., no use of
nlm, and offsets included in the formulae. Readers should refer to Smith and Faddy (2016) for details of
the actual modelling which involves Markov birth processes. This vignette was constructed as a static pdf
file using (R.rsp) Bengtsson (2022).

The models using extended Poisson process models (EPPMs) were originally developed in Faddy (1997),
where the construction of discrete probability distributions having very general dispersion properties was
described. The Poisson and negative binomial distributions are special cases of this modeling which includes
both underdispersion and overdispersion relative to the Poisson, with the negative binomial having the most
extreme level of overdispersion within the EPPM family. Faddy and Smith (2008) incorporated covariate
dependence in the mean via a reparameterization using an approximate form of the mean; Faddy and
Smith (2011) extended this to incorporate covariate dependence in the dispersion, this being achieved by
a reparameterization using an approximate form of the variance. The supplementary material for Faddy
and Smith (2011) contained R code illustrating fitting these models. This R code has been extended and
generalized to have inputs and outputs more akin to those of a generalized linear model (GLM) as in the R
function glm and the R function betareg (Cribari-Neto and Zeileis, 2010, Griin et al., 2012). Both Hilbe
(2011) and Hilbe (2014) have commented about a software package for EPPMs being developed in the R
system (R Core Team, 2023); the package CountsEPPM Smith and Faddy (2018) whose use is described
in this vignette is that software.



2 Description of the functions

The main function of the package, also named CountsEPPM, is focused on models with two covariate
dependences linked to the mean and scale-factor. The input into the function is a formula involving a
single response variable and one or two formulae related to the mean and scale-factor models. Although
the input formula involves a single response variable, the actual model fitting has a list of frequency
distributions 1ist.counts in place of the response variable, which is either input or constructed from the
input data according to whether a 1list or a data.frame is input. For all models the GLM link function
between the response variable (mean, scale-factor) and linear predictor of covariates is log; the log of
parameter b is also used but the parameter ¢ of Equation 2 of Smith and Faddy (2016) is untransformed.
The full three parameter version of Equation 2 of Smith and Faddy (2016) has been labeled the Faddy
distribution as in Grunwald et al. (2011). Because of possible issues with the parameter b, variants of
the models where b is fixed have been included in the lists of models. This enables profile log-likelihoods
to be produced for this parameter. Nash (2014) is a recent reference on optimization using R functions
and contains information on, and insights into, the methods used. All models are fitted to the data using
maximum likelihood, the optimization method used being the R function optim (options used being the
simplex method of Nelder and Mead (1967) or BFGS using numerical derivatives). A facility to change
options for optim through use of the argument control is included. The elements of this argument are
the options for optim as described in R Core Team (2023). The default values set within CountsEPPM
are fnscale = -1, trace = 0, maxit = 1000 for optim. Although for most data sets the two options
of optim give similar results in terms of log-likelihood and parameter estimates, etc., some results may
be a little different depending on particular features of the data set. The simplex method, is robust to
discontinuities in the log-likelihood surface. However, it is slow to converge. In contrast the function BFGS
makes use of derivatives, in this case numerical derivatives, resulting in faster convergence, but there is
a reliance on the log-likelihood surface being smooth i.e., no sudden changes in derivative values. Only
BFGS makes use of derivatives in the actual model fitting, but both options calculate a hessian matrix from
the derivatives to produce standard errors for the parameter estimates. The calculation of the numerical
derivatives and hessians use the functions grad and hessian from the package numDeriv (Gilbert and
Varadhan, 2019). The derivatives are more accurately calculated using numDeriv (Gilbert and Varadhan,
2019) than using alternative central difference approximations, resulting in better model fitting and better
conditioned hessians. However, as stated on Nash (2014, p. 131), a longer time is taken. The occurrence
of NA in the vector of standard errors is an indication of problems with the model fitting, possibly caused
by an inappropriate model. This is particularly so when all estimates of parameter standard errors are NA,
which results when the hessian matrix can not be be inverted due to its determinant being zero or it being
otherwise ill-conditioned. Having derivatives available means that they can be reviewed, together with the
hessian, at the conclusion of parameter estimation to evaluate whether maximum likelihood estimates have
been attained. The code for the main analysis function is

CountsEPPM(formula, data, subset = NULL, na.action = NULL, weights = NULL,
model.type = "mean and scale-factor", model.name = "general", link = "log",
initial = NULL, ltvalue = NA, utvalue = NA, method = "Nelder-Mead",
control = NULL, fixed.b=NA)

with details of the arguments given in Table 1 together with defaults if any. As in earlier versions, data
can be either a 1ist or a data.frame. The response variable in formula is a vector if a data.frame is
input, or a list if a 1ist is input. The response variables mean.obs and variance.obs are constructed
within CountsEPPM prior to being used to fit models. Package Formula Zeileis and Croissant (2010) is
used to extract model information from the formula input to CountsEPPM. To avoid repeated extrac-
tions within subordinate functions, extraction of model information used in the model fitting, such as
covariates.matrix.mean, is only done once within CountsEPPM. In version 3.0 a set of S3 generic extrac-
tor functions for objects of class "CountsEPPM" was added. The set is similar to that of Table 1 of betareg
(Cribari-Neto and Zeileis, 2010). CountsEPPM returns an object of class "CountsEPPM" summarizing the
model fit, the components of which are given in Table 2.



Argument Description Default

formula a single response variable & paired
formulae Zeileis and Croissant (2010)

data data.frame or list

subset subsetting commands NULL

na.action | action taken for NAs in data NULL

weights vector if data is a data.frame vector of ones
a list if data is a list list of lists of ones
attributes normalization, norm.to.n | both NULL

model.type | "mean only" "mean and scale-factor"

"mean and scale-factor"

if model.type = "mean only" (only a in Equation 2 of Smith and Faddy (2016) modeled)

model .name

"Poisson"

"negative binomial"

"negative binomial fixed b"
"Faddy distribution" Equation 2
of Smith and Faddy (2016)

"Faddy distribution fixed b"

if model.type = "mean and scale-factor" (both modeled)

model .name | "general" as Equations 3 and 4 "general"
"general fixed b"
"limiting" as Equations 9 and 10
of Smith and Faddy (2016)

link the glm link function for mean count | "log"
only log allowed

initial vector of initial values for parameters, | Poisson glm output
means first followed by the variances | augmented by 0’s
and/or parameters ¢, log(b) for other parameters

ltvalue lower truncation value (excluded) NA

utvalue upper truncation value (excluded) NA

method "Nelder-Mead" "Nelder-Mead"
"BFGS" attribute "grad.method" attribute "simple"
which is "simple" or "Richardson"

control list of control parameters optim see text for more details

fixed.b value b is fixed at NA

Table 1: Arguments of CountsEPPM.




Component Description

data.type "data.frame" or "list"

list.data data as a "list" of frequency distributions
call the call to CountsEPPM

formula the formula input

model . type "mean only" or "mean and scale-factor"

model .name

"Poisson", '"negative binomial", '"negative
binomial fixed b", "Faddy distribution"
(Equation 2), "Faddy distribution fixed b",
"general" (Equations 3 & 4), "general fixed
b", "limiting" (Equations 9 & 10).

Equation numbers of Smith and Faddy (2016)

link

the glm link function for mean count

covariates.matrix.mean

matrix of covariates for the mean

covariates.matrix.scalef

matrix of covariates for the scale-factor

offset.mean

offset vector for the mean

offset.scalef

offset vector for the scale-factor

coefficients the estimated coefficients
loglik the final log-likelihood value
vcov the estimated variance/covariance matrix

n needed for 1lmtest

the number of observations

nobs needed for stats

the number of observations

df .null null model degrees of freedom

df .residual residual degrees of freedom

ltvalue lower truncation value (excluded)

utvalue upper truncation value (excluded)

fixed.b value b is fixed at

vnmax a vector of maximum counts in each of
the grouped data vectors

weights a vector or list of weights

converged whether converged

iterations number of iterations

method "Nelder-Mead" or "BFGS"

start initial estimates input

optim final estimates of coefficients

control control parameters of optim

fitted.values

fitted values of mean count

y

observed values of mean count

terms

model terms

Table 2: Components of object returned by CountsEPPM.




As iteration is involved in the model fitting, initial estimates of the parameters are needed. These can
optionally be provided in the vector initial. Within CountsEPPM, if initial is unset, a Poisson model
is fitted using glm and the estimates from that fit are used to provide estimates for the parameters of the
mean linear predictor. If the scale-factor is also being modeled the initial estimates of the parameters of
the scale-factor linear predictor are set to 1.0 recognising that for the Poisson distribution the variance
equals the mean. The initial value of log(b) of Equation 2 of Smith and Faddy (2016) is set to zero. The
matrix exponential function used for calculating the probabilities of Equation 1 of Smith and Faddy (2016)
is that of the package expm of Maechler et al. (2023) which depends on the package Matrix of Bates et al.
(2023).

Function Description
print () a simple printed display
summary () standard regression output (coefficient estimates, standard

errors, partial Wald tests); returns an object of class
summary .BinaryEPPM containing the relevant summary
statistics (which has a print method)

coef () extract coefficients of model (full, mean, or scale-factor
components), a single vector of all coefficients by default

veov () associated covariance matrix (with matching names)

predict () predictions (response, linear predictor mean, linear

predictor scale-factor, scale-factor, mean, variance,
distribution probabilities, distribution parameters)

for existing and new data

fitted() fitted means for observed data

residuals() extract residuals (deviance, Pearson, response, standardized
deviance, standardized Pearson residuals), defaulting to
standardized Pearson residuals

terms () extract terms of model components

model .matrix () extract model matrix of model components
model . frame () extract full original model frame

logLik () extract fitted log-likelihood

plot () diagnostic plots of residuals, predictions, leverages, etc.
hatvalues() hat values (diagonal of hat matrix)
cooks.distance() | Cook’s distance

gleverage () generalized leverage

waldtest () Wald tests of model parameters

coeftest () partial Wald tests of coefficients

lrtest() likelihood ratio tests of model parameters
AICO compute information criteria (AIC, BIC, ...)

Table 3: Generic Functions for Use with Objects of Class CountsEPPM.

Table 3 gives details of a set of S3 generic extractor functions for objects of class "CountsEPPM". The
set is similar to that of Table 1 of Cribari-Neto and Zeileis (2010) related to package betareg, except
there are no functions estfun, bread or linear.hypothesis. Also, gleverage and cooks.distance are



variants of the functions glm.diag and glm.diag.plots from package boot Canty and Ripley (2022) rather
than betareg. The first four blocks refer to functions specific to CountsEPPM. The last block contains
generic functions, the default versions of which work because of the information supplied by the functions
of the first four blocks. Package lmtest Zeileis and Hothorn (2002) needs to be loaded to use coeftest and
1lrtest. Function AIC comes from stats which is a default package loaded when R is started. In Table 2
both n and nobs are included, so that functions from both packages lmtest and stats can use the object
returned.

As the vectors of frequency distributions are only required to be of length the maximum observed count
value +1, this is how they are set up. However, the fitted models can have probability masses at counts
greater than these maximum counts. A component of the output object from CountsEPPM i.e., $vnmax is
a vector of the maximum observed counts. If probabilities for counts greater than these maximums are
wanted, the values in output . fn$vnmax can be increased in value and predict with type="distribution"
run to obtain these probabilities.

3 Examples

The examples illustrate various ways in which CountsEPPM can be used to produce informatative analyses.
For the first three examples data is a 1ist where the dependent variable of counts is a list of vectors
of frequency distributions, whereas for the last two data is a data frame. Significant time savings can
be made by using the 1ist form of input where applicable. The fitting of models and estimation of their
parameters can be sensitive to the initial estimates and method of estimation chosen, with flatness of
the log-likelihood surface possible, particularly with respect to the parameter b. It is recommended that
analyses be run more than once using different initial estimates and optimization methods.

3.1 Number of young at varying efluent concentrations data

These Ceriodaphnia dubia data were used as an example by Faddy and Smith (2011). Ceriodaphnia dubia
are water fleas used to test the impact of effluents on water quality. The data, originally from Bailer and
Oris (1997), are counts of young at varying effluent concentrations, and are in list of frequencies and
variables form. The defaults for model.type of "mean and scale-factor", and model of "general", are
used. The code given below is for a run using the method="simplex" option of optim followed by one
using BFGS with attribute="Richardson" with this last run giving derivatives (gradients) at the final
estimates. Although during these runs the estimate of log(b) changed sign, its standard error is relatively
large and the estimates of the other parameters had relatively small changes in value.

> output.fn <- CountsEPPM(number.young ~ 1 + vdose + vdose2 |

+ 1 + vdose + vdose2, data = ceriodaphnia.group, control = list(maxit = 4000,
+ reltol = le-11))

> names (output.fn$optim$par) <- c("mean Intercept", "mean dose",

+ "mean dose”2", "scale-factor Intercept", "scale-factor dose",
+ "scale-factor dose”™2", "log(b)")

> method <- "BFGS"

> attr(method, which = "grad.method") <- "Richardson"

> output.fn <- update(output.fn, initial = output.fn$optim$par,

+ method = method)

> summary (output.fn)

Dependent variable is a list of frequency distributions for counts

Call:

CountsEPPM(formula = number.young ~ 1 + vdose + vdose2 | 1 + vdose +
vdose2, data = ceriodaphnia.group, initial = output.fn$optim$par,
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method = method, control = list(maxit = 4000, reltol = le-11))
Model type : mean and scale-factor
Model name : general
Link scale-factor : log
Coefficients (model for mean with log link)
t test of coefficients:
Estimate Std. Error t value Pr(>|tl)
mean Intercept 3.1406554 0.0869054 36.1388 < 2.2e-16 **x*

mean dose 0.1733831 0.0306760 5.6521 1.170e-06 *xx
mean dose”2 -0.0196109 0.0025417 -7.7156 1.203e-09 **x*
Signif. codes: 0 ‘***’ 0.001 ‘*x’ 0.01 ‘*x’ 0.056 “.” 0.1 ¢ ’ 1

Coefficients (model for scale-factor with log link)
t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
scale-factor Intercept 1.297690 0.446589 2.9058 0.005768 x*x*

scale-factor dose -0.665740 0.219718 -3.0300 0.004129 x**
scale-factor dose”2 0.047334 0.015831 2.9899 0.004603 *x*
log(b) -0.144725 2.825796 -0.0512 0.959391

Signif. codes: 0 ‘**x’ 0.001 ‘*%’ 0.01 ‘x> 0.05 ¢.” 0.1 “ ’ 1

Type of estimator: ML (maximum likelihood)

Log-likelihood: -152.1356 on 7 Df

Number of iterations: 54 of optim method BFGS gradient method Richardson
final gradients of parameters

[1] 0.0004941553 -0.0037358680 -0.0146512799 0.0002093457 -0.0003585277
[6] 0.0037383454 0.0008115459

return code O successful

The above parameter estimates agree with those in Faddy and Smith (2011) to two decimal places, except
for log(b) which is relatively poorly estimated. Further details of the model can be printed out such as
the parameters of the Faddy distribution as well as the predicted values of the means, variances and
scale-factors.

> print(predict(output.fn, type = "distribution.parameters"))
out.va out.vb out.vc
7.661050 0.8652604 0.5179848
18.489075 0.8652604 0.1830096
56.471380 0.8652604 -0.2029656
414.300384 0.8652604 -0.9160960
6.799103 0.8652604 0.2157105
predictions <- data.frame(mean = predict(output.fn, type = "mean"),
variance = predict(output.fn, type = "variance"), scale.factor = predict(output.fn,
type = "scale.factor"))
print (predictions)
mean variance scale.factor
1 23.119013 84.63475 3.6608289
2 28.895566 41.96015 1.4521312
3 32.817583 23.81847 0.7257839
4
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31.761267 11.51949 0.3626899
9.428487 13.67522 1.4504148



To illustrate use of the newdata argument of predict a new data.frame of the second and third rows is
constructed and used with predict.

> newdata <- data.frame(intercept = rep(l, 2), vdose = ceriodaphnia.group$vdose[2:3],
+ vdose2 = ceriodaphnia.group$vdose2[2:3], vmmax = c(35,

+ 44))

> predictions <- data.frame(mean = predict(output.fn, newdata = newdata,

+ type = "mean"), variance = predict(output.fn, newdata = newdata,

+ type = "variance"), scale.factor = predict(output.fn,

+ newdata = newdata, type = "scale.factor"))

> print(predictions)

mean variance scale.factor
28.89557 41.96015 1.4521312
32.81758 23.81847 0.7257839

N =

3.2 Lining et al. data

These data are from Liining et al. (1966) and are in the form of a 1list of frequencies and variables. The
number of trials are stated in Liining et al. (1966) to be both lower and upper truncated at 4 and 11
respectively, so the data are for counts of 5 to 10. Default initial values are used for fitting the default
general model of Equations 3 and 4 of Smith and Faddy (2016).

> output.fn <- CountsEPPM(number.trials ~ O + fdose | O + fdose,
+ Luningetal.litters, ltvalue = 4, utvalue = 11, control = list(maxit = 2000))
> summary (output.fn)

Dependent variable is a list of frequency distributions for counts
distribution truncated below at 4
distribution truncated above at 11
Call:
CountsEPPM(formula = number.trials ~ O + fdose | O + fdose, data = Luningetal.litters,
ltvalue = 4, utvalue = 11, control = list(maxit = 2000))
Model type : mean and scale-factor
Model name : general
Link scale-factor : log
Coefficients (model for mean with log link)
t test of coefficients:
Estimate Std. Error t value Pr(>|tl)
fdose0  1.9171890 0.0022050 869.471 < 2.2e-16 *xx*
fdose300 1.8321149 0.0099383 184.350 < 2.2e-16 *xx
fdose600 1.7239822 0.0186856 92.262 < 2.2e-16 *xx*
Signif. codes: 0 ‘*x*x’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.” 0.1 “ ’ 1
Coefficients (model for scale-factor with log link)
t test of coefficients:
Estimate Std. Error t value Pr(>[tl)
fdose0  -1.446450 0.074170 -19.5018 < 2.2e-16 ***
fdose300 -1.365485  0.092402 -14.7777 < 2.2e-16 ***
fdose600 -1.209275 0.138516 -8.7302 < 2.2e-16 ***



log(b)  19.395048 NaN NaN NaN
Signif. codes: O ‘*x*x’ 0.001 ‘*%’ 0.01 ‘x> 0.05 .’ 0.1 ¢ * 1
Type of estimator: ML (maximum likelihood)

Log-likelihood: -2653.815 on 7 Df

Number of iterations: 1068 of optim method Nelder-Mead
return code 0 successful

A warning message In sqrt(diag(varcov)) : NaNs produced is produced which appears in the (R.rsp)
Bengtsson (2022) log file. This message and the value of b = exp(19.395048) being large suggests that the
fitted model corresponds to a negative exponential sequence in the underlying birth process (Equations 9
and 10 of Smith and Faddy (2016)).

> output.fn <- update(output.fn, model.name = "limiting")
> summary (output.fn)

Dependent variable is a list of frequency distributions for counts
distribution truncated below at 4
distribution truncated above at 11

Call:

CountsEPPM(formula = number.trials ~ O + fdose | O + fdose, data = Luningetal.litters,
model.name = "limiting", ltvalue = 4, utvalue = 11, control = list(maxit = 2000))

Model type : mean and scale-factor

Model name : limiting

Link scale-factor : log
Coefficients (model for mean with log link)
t test of coefficients:
Estimate Std. Error t value Pr(>|tl)
fdoseO 1.9169670 0.0077381 247.730 < 2.2e-16 ***
fdose300 1.8320442 0.0099421 184.271 < 2.2e-16 **x*
fdose600 1.7242914 0.0186506 92.453 < 2.2e-16 ***
Signif. codes: O ‘*x*x’> 0.001 ‘*x’ 0.01 ‘*’ 0.05 .’ 0.1 ¢ > 1
Coefficients (model for scale-factor with log link)
t test of coefficients:
Estimate Std. Error t value Pr(>|tl|)
fdoseO -1.444080 0.074503 -19.3828 < 2.2e-16 *x*x*
fdose300 -1.366303 0.092760 -14.7294 < 2.2e-16 *x*x*
fdose600 -1.210711 0.138765 -8.7249 < 2.2e-16 *xx*
Signif. codes: 0 ‘**x’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.” 0.1 “ ’ 1
Type of estimator: ML (maximum likelihood)
Log-likelihood: -2653.816 on 6 Df
Number of iterations: 533 of optim method Nelder-Mead
return code 0 successful

The parameters of the limiting model can be printed out

> Im.loglik <- output.fn$loglik
> print(lm.loglik)



-2653
1

a0 0000 O0O0CO0OO0QO0O OO0 O & EmEngmodel

log{likelihood)
-26A5 -26454
|
=]

<2656
|

-2657
|

-26458
1

log(D)

Figure 1: log-likelihood for fixed values of parameter log(b).

[1] -2653.816

> predict(output.fn, type = "distribution.parameters")
out.valpha out.vbeta

1 22.99626 -0.3067979

2 18.91508 -0.3070639

3 13.95311 -0.2872457

showing much the same results as the previous fit of the general model. To further explore the appropri-
ateness of the limiting model a profile likelihood was constructed for a range of values of parameter b from
the version of the general fixed b model of Equations 3 and 4 of Smith and Faddy (2016) with a plot
of the resulting log(likelihoods) against log(b) being produced. In Figure 1 there is a clear trending of the
log-likelihood values toward the value of the limiting model. The code used to produce Figure 1 follows.

> vfixed.b <- c(0:19)
> vloglikelihood <- rep(0, 20)
> vloglikelihood <- sapply(1:20, function(i) {

+ if (1 ==1) {

+ output.fn <- CountsEPPM(number.trials ~ O + fdose |

+ 0 + fdose, Luningetal.litters, model.name = "general fixed b",
+ ltvalue = 4, utvalue = 11, fixed.b = exp(vfixed.b[i]))

+ } else {

+ output.fn <- CountsEPPM(number.trials ~ 0 + fdose |

+ 0 + fdose, Luningetal.litters, model.name = "general fixed b",
+ ltvalue = 4, utvalue = 11, initial = output.fn$optim$par,

+ fixed.b = exp(vfixed.b[i]))

+ ¥
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+ vloglikelihood[i] <- output.fn$loglik

+ 1)

> plot(vfixed.b, vloglikelihood, xlim = c(0, 25), ylim = c(-2658,

+ -2653), main = "Profile likelihood for log(b) Luning litters data",
+ xlab = "log(b)", ylab = "log(likelihood)")

> points(20, 1m.loglik, pch = 16)

> text(20.1, lm.loglik, "limiting model", pos = 4, offset = 0.5,

+ cex = 0.7)

3.3 Number of attempts at feeding of herons

These data are originally from Zhu et al. (2003) and are in the form of a list of frequencies and vari-
ables. Faddy and Smith (2005) described an alternative modeling approach to that of Zhu et al. (2003)
constructing a bivariate EPPM for both count (number of attempts) and grouped (number of successful
attempts) data. Here a univariate EPPM for the numbers of trials (attempts at foraging) of 20 adult and
20 immature green-backed herons is considered. The first model fitted was a negative binomial using the
default initial values.

> output.fn.one <- CountsEPPM(number.attempts ~ O + group,

+ herons.group, model.type = "mean only", model.name = "negative binomial")
> names (output.fn.one$optim$par) <- c("Adult mean", "Immature mean",

+ "log(b)")

> print (summary(output.fn.one))

Dependent variable is a list of frequency distributions for counts
Call:
CountsEPPM(formula = number.attempts ~ O + group, data = herons.group,

model.type = "mean only", model.name = "negative binomial")
Model type : mean only
Model name : negative binomial

Coefficients (model for mean with log link)
t test of coefficients:
Estimate Std. Error t value Pr(>|t])
group Adult 0.56230 0.15500 3.6279 0.0008573 **x
group Immature 0.47586 0.16439 2.8947 0.0063315 *x*
Signif. codes: 0 ‘*x**’ 0.001 ‘*x’ 0.01 ‘*x’ 0.056 ‘.” 0.1 ¢ ’ 1
Coefficients (model for scale-factor with log link)
t test of coefficients:
Estimate Std. Error t value Pr(>|t])
log(b) 0.50825 0.26793 1.897 0.06566 .

Signif. codes: 0 ‘*xx’ 0.001 ‘*%’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1
Type of estimator: ML (maximum likelihood)

Log-likelihood: -120.2042 on 3 Df

Number of iterations: 108 of optim method Nelder-Mead

return code O successful

The second model fitted was a more general Faddy distribution again using the default initial values.
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> output.fn.two <- update(output.fn.one, model.name = "Faddy distribution")
> names (output.fn.two$optim$par) <- c("Adult mean", "Immature mean",

+ "c", "log(b)")

> print (summary (output.fn.two))

Dependent variable is a list of frequency distributions for counts
Call:
CountsEPPM(formula = number.attempts ~ O + group, data = herons.group,

model.type = "mean only", model.name = "Faddy distribution")
Model type : mean only
Model name : Faddy distribution

Coefficients (model for mean with log link)
t test of coefficients:

Estimate Std. Error t value Pr(>|tl)
group Adult 0.56282 0.15496 3.6320 0.0008688 *x*x*
group Immature 0.47652 0.16436 2.8993 0.0063351 *x*
Signif. codes: 0 ‘*x**’ 0.001 ‘*%’ 0.01 ‘*x’ 0.056 ‘.’ 0.1 ¢ ’ 1
Coefficients (model for scale-factor with log link)
t test of coefficients:

Estimate Std. Error t value Pr(>|tl)

c 1.0000e+00 1.5724e-05 63596.0001 <2e-16 **x*
log(b) 5.0703e-01 2.6792e-01 1.8924 0.0665 .
Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 .’ 0.1 ¢ > 1

Type of estimator: ML (maximum likelihood)
Log-likelihood: -120.2042 on 4 Df

Number of iterations: 331 of optim method Nelder-Mead
return code O successful

The estimate of the parameter c here is very close to 1.000, the upper limit of the range of permitted values of
this parameter which corresponds to a negative binomial model. A Wald test can be performed to compare
the coefficients in two models, which as the negative binomial is embedded in the Faddy distribution model,
is equivalent to the t test of coefficient c. This equivalence is mentioned in the documentation for waldtest
in the package Imtest.

> waldtest (output.fn.two, output.fn.one)

Wald test

Model 1: number.attempts ~ O + group

Model 2: number.attempts ~ O + group
Res.Df Df Chisq Pr(>Chisq)

1 36
2 37 -1 8.406 0.00374 *x*
Signif. codes: 0 ‘*xx’ 0.001 ‘*%’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

A likelihood ratio test can also be performed to compare the model fits.

> lrtest(output.fn.one, output.fn.two)
Likelihood ratio test
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Model 1: number.attempts ~ O + group

Model 2: number.attempts ~ O + group
#Df LogLik Df Chisq Pr(>Chisq)

1 3 -120.2

2 4 -120.2 1 0 0.997

Print outs of the parameters of the Faddy distribution and the associated distribution for the first group
can be produced.

> predict(output.fn.two, type
out.va out.vb out.vc
1 1.755613 1.66035 0.9999997
2 1.610463 1.66035 0.9999997
> predict(output.fn.two, type = "distribution") [1]
[[111
[1] 0.054207702 0.074451022 0.081919897 0.082680037 0.079683626 0.074619482
[7] 0.068518504 0.062025215 0.055542261 0.049315532 0.043487554 0.038132360
[13] 0.033278821 0.028926520 0.025056608 0.021639253 0.018638723 0.016016821
[19] 0.013735148 0.011756573 0.010046116 0.008571446 0.007303109 0.006214567
[25] 0.005282124

"distribution.parameters")

By increasing the maximum values for the grouped counts using the following code, the probabilities for
the next ten counts in the sequence for the first group can be obtained.

wks <- output.fn.two$vnmax[1] + 2

wke <- output.fn.two$vnmax[1] + 11

output.fn.two$vnmax[1] <- output.fn.two$vnmax[1] + 10
predict(output.fn.two, type = "distribution") [[1]] [wks:wke]

[1] 0.0044847776 0.0038040231 0.0032236418 0.0027294804 0.0023092342
[6] 0.0019522416 0.0016492910 0.0013924445 0.0011748767 0.0009907317

vV V V V

A weighted analysis using the reciprocal of the predicted variances can be performed.

herons.group$weights <- herons.group$number.attempts
weights <- 1/predict(output.fn.one, type = "variance")
herons.group$weights <- lapply(l:length(herons.group$weights),
function(i) {
herons.group$weights[[i]] <- rep(weights[i], length(herons.group$weights[[i]]))
)
attr(herons.group$weights, which = "normalize") <- TRUE
output.fn <- CountsEPPM(number.attempts ~ O + group, herons.group,
model.type = "mean only", model.name = "Poisson", weights = herons.group$weights)
names (output.fn$optim$par) <- c("Adult mean", "Immature mean")
summary (output.fn)

VV + VYV + + + V VYV

Dependent variable is a list of frequency distributions for counts
Call:
CountsEPPM(formula = number.attempts ~ O + group, data = herons.group,
weights = herons.group$weights, model.type = "mean only", model.name = "Poisson")
Model type : mean only

13



Model name : Poisson
Coefficients (model for mean with log link)
t test of coefficients:

Estimate Std. Error t value Pr(>|tl)
group Adult 2.073172 0.086557 23.951 < 2.2e-16 **x
group Immature 1.894617 0.080490 23.538 < 2.2e-16 ***
Signif. codes: O ‘*x*x’ 0.001 ‘*%’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Maximum weighted likelihood regression.

List of weights used.

Type of estimator: ML (maximum likelihood)
Log-likelihood: -168.3474 on 2 Df

Number of iterations: 45 of optim method Nelder-Mead
return code O successful

The same data as herons. group, but in data. frame form, has been included in the package as herons. case.
Running the same code with herons.group replaced by herons.case will produce essentially the same
outputs.

3.4 Titanic survivors

To illustrate the inclusion of offsets, data of passenger survival from the 1912 sinking of the Titanic are
used. The data are in data frame form as given in Table 9.37 of Hilbe (2011) i.e., the numbers surviving out
of the number of cases (passengers) within different age, sex, and class categories. The individual data for
all 1316 passengers is available from package msme Hilbe and Robinson (2018). Hilbe (2011, p. 265-268)
analyzes the numbers surviving as count data with an offset of the log of the number of cases for the mean,
and fits a negative binomial with variance function v = m + am? which equates to the variance function
of Equation 4 of Smith and Faddy (2016) with « = i. Both mean and scale-factor need to be offset
by the log of the number of cases. A series of models was fitted: a negative binomial with the parameter
b fixed at the value from Hilbe (2011) of b = 9.615385; a negative binomial; a Faddy distribution; and a
general mean and scale-factor model with only an intercept for the scale-factor. The general mean and
scale-factor model with only an intercept for the scale-factor was found to have the largest log-likelihood.
Details of it and its fitting follow.

lncases <- log(Titanic.survivors.case$cases)
output.fn <- CountsEPPM(survive ~ age + sex + class + offset(lncases) |
1 + offset(lncases), Titanic.survivors.case, control = list(maxit = 2000))
names (output.fn$optim$par) <- c("Intercept mean", "age adult",
"sex male", "class 2nd class", "class 3rd class", "Intercept scale",
"log(b)")
output.fn <- update(output.fn, initial = output.fn$optim$par,
method = "BFGS")
summary (output.fn)

vV + VvV + + V + VvV V

Dependent variable a vector of counts.

Call:

CountsEPPM(formula = survive ~ age + sex + class + offset(lncases) |
1 + offset(lncases), data = Titanic.survivors.case, initial = output.fn$optim$par,
method = "BFGS", control = list(maxit = 2000))

Model type : mean and scale-factor

Model name . general
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Link scale-factor : log
non zero offsets in linear predictors
Coefficients (model for mean with log link)
t test of coefficients:
Estimate Std. Error t value Pr(>|tl)

Intercept mean  0.047473 .083371 0.5694 0.593694
age adult -0.043302 .132670 -0.3264 0.757348
sex male -0.177380 .129397 -1.3708 0.228762

class 2nd class -0.031658
class 3rd class -0.900906
Signif. codes: 0 ‘***’ 0.001 ‘*x’ 0.01 ‘*x’ 0.056 “.” 0.1 ¢ ’ 1
Coefficients (model for scale-factor with log link)
t test of coefficients:

Estimate Std. Error t value Pr(>|t])
Intercept scale -4.04620 0.54015 -7.4909 0.00067 **x
log(b) -7.32906 3.64542 -2.0105 0.10058
Signif. codes: O ‘*x*x’ 0.001 ‘*%’ 0.01 ‘x> 0.05 .’ 0.1 ¢ * 1
Type of estimator: ML (maximum likelihood)
Log-likelihood: -39.39972 on 7 Df
Number of iterations: 60 of optim method BFGS gradient method simple
final gradients of parameters
[1] -0.0205864745 -0.0007941051 0.0041589485 0.0022987724 0.0068945663
[6] 0.0018445196 0.0006846674
return code O successful

.112977 -0.2802 0.790538
.144728 -6.2248 0.001565 **

O O O O O

The parameters of the Faddy distribution can now be printed out.

> predict(output.fn, type = "distribution.parameters")
out.va out.vb out.vc
1 0.1393248 0.0006561875 -28.10787857
2 45.9518038 0.0006561875  0.30301645
3 1594.5275880 0.0006561875 -5.21885211
4 40.8714465 0.0006561875  0.33977979
5  392.8734253 0.0006561875 -1.69933911
6 47.0245997 0.0006561875  0.19279231
7 330.3158576 0.0006561875 -2.09927205
8 39.9228614 0.0006561875  0.33264198
9 27.6084984 0.0006561875 -0.42230350
10  25.0221806 0.0006561875 0.33016644
11 20.5064676 0.0006561875 -0.09564431
12 28.2096641 0.0006561875  0.46262788

The fit of the general mean and scale-factor model is better than that of Hilbe (2011)(page 268), the log-
likelihood values being —39.400 and —43.719 respectively; although the former has one extra parameter it
would be preferred according to AIC.
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3.5 Take over bids

These data, originally from Cameron and Johansson (1997), are used as example data in Cameron and
Trivedi (2013) as well as in Sdez-Castillo and Conde-Sénchez (2013). The takeover.bids.case came from
the website associated with Cameron and Trivedi (2013). The dependent variable NUMBIDS is the number of
bids received by the firm targeted for takeover after the initial bid. As both variables CASE, CONSTANT
are equal to 1 throughout they have not been included in package data set. In Smith and Faddy (2016),
related to version 2.1 of CountsEPPM, the continuous variables were scaled to have zero mean and unit
standard deviation prior to analysis, as it was found that the scaling of the continuous variables improved
the model fitting. The changes and additions made to version 3.0 make this unnecessary.

method <- "BFGS"

attr(method, which = "grad.method") <- "Richardson"

output.fn <- CountsEPPM(NUMBIDS ~ LEGLREST + REALREST + FINREST +
WHTKNGHT + BIDPREM + INSTHOLD + SIZE + SIZESQ + REGULATN |
LEGLREST + REALREST + FINREST + WHTKNGHT + BIDPREM +

INSTHOLD + SIZE + SIZESQ + REGULATN, data = takeover.bids.case,

method = method)

summary (output.fn)

vV + + + + V VvV V

Dependent variable a vector of counts.

Call:

CountsEPPM(formula = NUMBIDS ~ LEGLREST + REALREST + FINREST + WHTKNGHT +
BIDPREM + INSTHOLD + SIZE + SIZESQ + REGULATN | LEGLREST + REALREST +
FINREST + WHTKNGHT + BIDPREM + INSTHOLD + SIZE + SIZESQ + REGULATN,
data = takeover.bids.case, method = method)

Model type : mean and scale-factor

Model name . general

Link scale-factor : log

Coefficients (model for mean with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) 1.65957009 0.68434361 2.4251 0.0170129 *
LEGLREST 0.26739762 0.18056325 1.4809 0.1416256
REALREST -0.16824674 0.29408026 -0.5721 0.5684692
FINREST 0.67843758 0.34564743 1.9628 0.0523147 .
WHTKNGHT 0.81295885 0.23202026  3.5038 0.0006753 **x
BIDPREM -1.66155781 0.54975851 -3.0223 0.0031516 **
INSTHOLD -0.79387774 0.43031499 -1.8449 0.0678741 .
SIZE 0.30073005 0.01630548 18.4435 < 2.2e-16 **xx
SIZESQ -0.01431148 0.00075854 -18.8671 < 2.2e-16 **x*
REGULATN 0.24265669 0.22046981 1.1006 0.2735726
Signif. codes: 0 ‘**x’ 0.001 ‘%%’ 0.01 ‘%> 0.05 ¢.” 0.1 “ ’ 1

Coefficients (model for scale-factor with log link)
t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.43702463 0.71749182 0.6091 0.5438

LEGLREST -0.10510184 0.18555530 -0.5664  0.5723
REALREST 0.21145038 0.20608799 1.0260 0.3072
FINREST 0.52727653 0.50761873 1.0387 0.3013
WHTKNGHT 0.26344464 0.32522501 0.8100 0.4198
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BIDPREM -0.83563592 0.92563238 -0.9028 0.3687
INSTHOLD 0.00042329 0.02313890 0.0183 0.9854
SIZE 0.14333750 0.12561935 1.1410 0.2564
SIZESQ -0.01544509 0.01296636 -1.1912  0.2363
REGULATN 0.26132910 0.36784034 0.7104 0.4790
log(b) -5.40610469 6.17743959 -0.8751  0.3835

Type of estimator: ML (maximum likelihood)

Log-likelihood: -156.059 on 21 Df

Number of iterations: 270 of optim method BFGS gradient method Richardson
final gradients of parameters

[1] -0.0039474537 -0.0071995278 -0.0002617065 -0.0001596616 -0.0022699714
[6] -0.0062439523 -0.0018273699 -0.0170890232 -0.3991179713 -0.0020442627
[11] 0.0096255662 0.0105503277 0.0012085592 0.0021668738 0.0045170212
[16] 0.0138977697 1.3066759607 0.0142842395 0.0381147798 0.0069109067
[21] 0.0004830249

return code O successful

The Bayesian Information Criterion (BIC) can also be calculated using BIC (output.£fn) resulting in a value
of 413.6745. Convergence to the maximum likelihood estimates was slow due to the large number (21) of
parameters being estimated, the flatness of the log-likelihood surface and a small estimate of the (nuisance)
parameter b (negative value of log(b)). The estimate of b being close to 0 and the underdispersion (scale-
factor < 1) corresponding to ¢ < 0 in Equation 2 of Smith and Faddy (2016) means that the probability of a
zero count is very small (Equation 1 of Smith and Faddy (2016)) contributing to a better fitting model. The
log-likelihood value of —156.06 for this model with 21 parameters is larger than that of —157.86 from the
Séez-Castillo and Conde-Sanchez (2013) model with 15 parameters. Because of the six extra parameters
associated with only a relatively small increase in log-likelihood the BIC value of 413.67 is larger than
those of the models in Sdez-Castillo and Conde-Sénchez (2013): 398.1, 393.5 and 388.3. Sdez-Castillo and
Conde-Sénchez (2013) did not report details of fitting a model with the full set of 10 variables in both linear
predictors, suggesting that they could not achieve convergence of their fitting algorithm for this model. The
variables Sdez-Castillo and Conde-Sanchez (2013) do not include in their dispersion model as they are not
significant are LEGLREST, WHTKNGHT, INSTHOLD, SIZE, SIZESQ. There is reasonable agreement between the
results reported above and those of Sdez-Castillo and Conde-Sénchez (2013) about the significant variables
in the mean model; in both, SIZE and SIZESQ have very large t statistics. However, in the dispersion
model the results reported above show that SIZE and SIZESQ also have very large t statistics, whereas
in the Sdez-Castillo and Conde-Sénchez (2013) models they are not included due to being not significant.
Residual plots as in Cribari-Neto and Zeileis (2010) can be produced as displayed in Figure 2.

> layout(matrix(c(1:6), byrow = TRUE, ncol = 2))
> plot(output.fn, which = 1, type = "response")

> plot(output.fn, which = 2, type = "pearson")

> plot(output.fn, which = 3, type = "spearson")

> plot(output.fn, which = 4, type = "likelihood")
> plot(output.fn, which = 5, type = "deviance")

> plot(output.fn, which = 6, type = "sdeviance")

Examination of the estimated A; sequences of (birth) rate parameters (Equation 2 of Smith and Faddy
(2016)) shows that the Ao values are generally very different from the A; values for i > 1, as a consequence
of the small estimate of the parameter b. A more appropriate model for these data might be one that
treats the zero counts differently from the non-zero counts; this makes some sense as a zero count would
correspond to the initial bid being accepted by the targeted firm, and different circumstances (in the form
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Residuals vs indices of obs. Cook's distance plot

= . T g 4
o 5 _pe So 2 5, o g -
oo St B R A ingins | § g
& P oaa e 3 _
B 9 z i
g ¥ B
5 2 ot
o T T T T T T T B T T T T T T T
a 20 40 1] 1] 100 120 a 0 4 =] & 100 120
Qi raamineT i mImiDET
Leverage vs predicted values Fesiduals vs linear predictor
= I = g o] "
i 2 o
g 3 ° ° | B e
- o - (=]
o = O oaa °°n:F‘ o o
E g mﬁfp ki - e =gty ootk o
= T T T T T T T T T T
a 2 '] g a8 10 12 -1 a 1 2
Prediciedvaiies Lin=ar pradicior mean
Maormal Q-2 plot of residuals Predicted vs observed values
R L = o =
2o no® g
= sl =
E 9 o e
§ o - % i & =] & &
o -1 o o
5 = H =]
T o 00 s 2 [ ] l i E 8 °
T T T T T T T T T T T
-2 -1 a 1 2 ] 2 ] -} a8 10
wormal ouanitlies CiEaned vEles

Figure 2: Residual plots.

of different covariate dependence) might be operating. Such a model is not readily constructed from those
considered here.

4 Concluding remarks

This vignette has described the use of version 3.1 of the R package CountsEPPM to fit EPPMs to count
data that exhibit under- or over-dispersion relative to the Poisson distribution. A variety of covariate
dependencies and data structures are covered in examples that illustrate the variety of ways in which the
package can be used in the analysis of count data. Further updates to CountsEPPM are in process.

As described in Faddy and Smith (2005) and Faddy and Smith (2012), the mean and scale-factor of
binary data can be modeled using EPPMs in a similar way to that described here for count data. A package
BinaryEPPM is available in CRAN. This package is being updated to include a vignette describing its use.
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