Package 'ConsensusClustering'

January 20, 2025

Type Package

Title Consensus Clustering

Version 1.5.0

Description Clustering, or cluster analysis, is a widely used technique in bioinformatics to identify groups of similar biological data points. Consensus clustering is an extension to clustering algorithms that aims to construct a robust result from those clustering features that are invariant under different sources of variation. For the reference, please cite the following paper: Yousefi, Melograna, et. al., (2023) <doi:10.3389/fmicb.2023.1170391>.

License GPL (>= 3)

Encoding UTF-8

stats

RoxygenNote 7.3.2

Imports assertthat, dplyr, igraph, cluster, mvtnorm, utils, graphics,

NeedsCompilation no

Author Behnam Yousefi [aut, cre, cph]

Maintainer Behnam Yousefi <yousefi.bme@gmail.com>

Repository CRAN

Date/Publication 2024-07-30 08:00:02 UTC

Contents

dj_conv
dj_mat
c_cluster_count
luster_relabel
oCluster_matrix
onnectivity_matrix
onsensus_matrix
onsensus_matrix_data_prtrb
onsensus_matrix_multiview
aussian_clusters
aussian_clusters_with_param

29

gaussian_mixture_clusters	11
generate_data_prtrb	12
generate_gaussian_data	14
generate_method_prtrb	14
generate_multiview	15
hir_clust_from_adj_mat	16
indicator_matrix	17
label_similarity	18
Logit	19
majority_voting	19
multiview_clusters	20
multiview_cluster_gen	21
multiview_kmeans_gen	22
multiview_pam_gen	23
multi_cluster_gen	24
multi_kmeans_gen	25
multi_pam_gen	25
pam_clust_from_adj_mat	26
spect_clust_from_adj_mat	27

Index

adj_conv

Convert adjacency function to the affinity matrix

Description

Convert adjacency function to the affinity matrix

Usage

adj_conv(adj.mat, alpha = 1)

Arguments

adj.mat	Adjacency matrix. The elements must be within [-1, 1].
alpha	soft threshold value (see details).

Details

 $adj = exp(-(1-adj)^2/(2*alpha^2))$ ref: Luxburg (2007), "A tutorial on spectral clustering", Stat Comput

Value

the matrix if affinity values.

adj_mat

Examples

adj_mat

Covert data matrix to adjacency matrix

Description

Covert data matrix to adjacency matrix

Usage

adj_mat(X, method = "euclidian")

Arguments

Х	a matrix of samples by features.
method	method for distance calculation: "euclidian", "cosine", "maximum", "manhattan",
	"canberra", "binary", "minkowski",

Value

calculated adjacency matrix from the data matrix using the specified methods

Examples

```
X = gaussian_clusters()$X
Adj = adj_mat(X, method = "euclidian")
```

cc_cluster_count Count the number of clusters based on stability score.

Description

Count the number of clusters based on stability score.

Usage

```
cc_cluster_count(CM, plot.cdf = TRUE, plot.logit = FALSE)
```

Arguments

СМ	list of consensus matrices each for a specific number of clusters. It can be the output of consensus_matrix() and multiview_consensus_matrix() functions.
plot.cdf	binary value to plot the cumulative distribution functions of CM (default TRUE).
plot.logit	binary value to plot the logit model of cumulative distribution functions of CM (default FALSE).

Details

Count the number of clusters given a list of consensus matrices each for a specific number of clusters. Using different methods: "LogitScore", "PAC", "deltaA", "CMavg"

Value

results as a list: "LogitScore", "PAC", "deltaA", "CMavg", "Kopt_LogitScore", "Kopt_PAC", "Kopt_deltaA", "Kopt_CMavg"

Examples

```
X = gaussian_clusters()$X
Adj = adj_mat(X, method = "euclidian")
CM = consensus_matrix(Adj, max.cluster=3, max.itter=10)
Result = cc_cluster_count(CM, plot.cdf=FALSE)
```

cluster_relabel	Relabeling cluster	s based on cluste'	r similarities
-----------------	--------------------	--------------------	----------------

Description

Relabeling clusters based on cluster similarities

Usage

```
cluster_relabel(x1, x2)
```

Arguments

x1	clustering vector 1 Zero elements are are considered as unclustered samples
x2	clustering vector 2 Zero elements are are considered as unclustered samples

Details

When performing performing several clustering, the cluster labels may no match with each other. To perform maximum voting, the clustering need to be relabels based on label similarities.

coCluster_matrix

Value

dataframe of relabeled clusters

Examples

```
X = gaussian_clusters()$X
x1 = kmeans(X, 5)$cluster
x2 = kmeans(X, 5)$cluster
clusters = cluster_relabel(x1, x2)
```

coCluster_matrix Calculate the Co-cluster matrix for a given set of clustering results.

Description

Calculate the Co-cluster matrix for a given set of clustering results.

Usage

coCluster_matrix(X, verbos = TRUE)

Arguments

Х	clustering matrix of Nsamples x Nclusterings. Zero elements are are considered as unclustered samples
verbos	binary value for verbosity (default = TRUE)

Details

Co-cluster matrix or consensus matrix (CM) is a method for consensus mechanism explaned in Monti et al. (2003).

Value

The normalized matrix of Co-cluster frequency of any pairs of samples (Nsamples x Nsamples)

```
Clustering = cbind(c(1,1,1,2,2,2),
c(1,1,2,1,2,2))
coCluster_matrix(Clustering, verbos = FALSE)
```

connectivity_matrix Build connectivity matrix

Description

Build connectivity matrix

Usage

```
connectivity_matrix(clusters)
```

Arguments

clusters

a vector of clusterings. Zero elements mean that the sample was absent during clustering

Details

Connectivity matrix (M) is a binary matrix N-by-N M[i,j] = 1 if sample i and j are in the same cluster ref: Monti et al. (2003) "Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data", Machine Learning

Value

Connectivity matrix

Examples

con_mat = connectivity_matrix(c(1,1,1,2,2,2))

consensus_matrix	Calculate consensus matrix for data perturbation consensus cluster-
	ing

Description

Calculate consensus matrix for data perturbation consensus clustering

consensus_matrix

Usage

```
consensus_matrix(
   X,
   max.cluster = 5,
   resample.ratio = 0.7,
   max.itter = 100,
   clustering.method = "hclust",
   adj.conv = TRUE,
   verbos = TRUE
)
```

Arguments

Х	adjacency matrix a Nsample x Nsample	
<pre>max.cluster</pre>	maximum number of clusters	
resample.ratio	the data ratio to use at each itteration.	
max.itter	maximum number of itterations at each max.cluster	
clustering.method		
	<pre>base clustering method: c("hclust", "spectral", "pam")</pre>	
adj.conv	binary value to apply soft thresholding (default=TRUE)	
verbos	binary value for verbosity (default=TRUE)	

Details

performs data perturbation consensus clustering and obtain consensus matrix Monti et al. (2003) consensus clustering algorithm This function will be removed in the future release and is replaced by consensus_matrix_data_prtrb()

Value

list of consensus matrices for each k

```
X = gaussian_clusters()$X
Adj = adj_mat(X, method = "euclidian")
CM = consensus_matrix(Adj, max.cluster=3, max.itter=10, verbos = FALSE)
```

```
consensus_matrix_data_prtrb
```

Calculate consensus matrix for data perturbation consensus clustering

Description

Calculate consensus matrix for data perturbation consensus clustering

Usage

```
consensus_matrix_data_prtrb(
  X,
  max.cluster = 5,
  resample.ratio = 0.7,
  max.itter = 100,
  clustering.method = "hclust",
  adj.conv = TRUE,
  verbos = TRUE
)
```

Arguments

Х	adjacency matrix a Nsample x Nsample
max.cluster	maximum number of clusters
resample.ratio	the data ratio to use at each itteration.
<pre>max.itter clustering.meth</pre>	maximum number of itterations at each max.cluster
	<pre>base clustering method: c("hclust", "spectral", "pam")</pre>
adj.conv	binary value to apply soft thresholding (default=TRUE)
verbos	binary value for verbosity (default=TRUE)

Details

performs data perturbation consensus clustering and obtain consensus matrix Monti et al. (2003) consensus clustering algorithm

Value

list of consensus matrices for each k

```
X = gaussian_clusters()$X
Adj = adj_mat(X, method = "euclidian")
CM = consensus_matrix_data_prtrb(Adj, max.cluster=3, max.itter=10, verbos = FALSE)
```

consensus_matrix_multiview

Calculate consensus matrix for multi-data consensus clustering

Description

Calculate consensus matrix for multi-data consensus clustering

Usage

```
consensus_matrix_multiview(
   X,
   max.cluster = 5,
   sample.set = NA,
   clustering.method = "hclust",
   adj.conv = TRUE,
   verbos = TRUE
)
```

Arguments

Х	list of adjacency matrices for different cohorts (or views).	
max.cluster	maximum number of clusters	
sample.set	vector of samples the clustering is being applied on. sample.set can be names or indices. if sample.set is NA, it considers that all the datasets have the same samples with the same order.	
clustering.method		
	<pre>base clustering method: c("hclust", "spectral", "pam")</pre>	
adj.conv	binary value to apply soft threshold (default=TRUE)	
verbos	binary value for verbosity (default=TRUE)	
verbos		

Details

performs multi-data consensus clustering and obtain consensus matrix Monti et al. (2003) consensus clustering algorithm

Value

description list of consensus matrices for each k

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2),
sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))
X_observation = data[["observation"]]
Adj = list()
```

```
for (i in 1:length(X_observation))
   Adj[[i]] = adj_mat(X_observation[[i]], method = "euclidian")
CM = consensus_matrix_multiview(Adj, max.cluster = 4, verbos = FALSE)
```

gaussian_clusters Generate clusters of data points from Gaussian distribution with randomly generated parameters

Description

Generate clusters of data points from Gaussian distribution with randomly generated parameters

Usage

```
gaussian_clusters(
  n = c(50, 50),
  dim = 2,
  sd.max = 0.1,
  sd.noise = 0.01,
  r.range = c(0.1, 1)
)
```

Arguments

n	vector of number of data points in each cluster The length of n should be equal to the number of clusters.
dim	number of dimensions
sd.max	maximum standard deviation of clusters
sd.noise	standard deviation of the added noise
r.range	the range (min, max) of distance of cluster centers from the origin

Value

a list of data points (X) and cluster labels (class)

Examples

```
data = gaussian_clusters()
X = data$X
y = data$class
```

10

gaussian_clusters_with_param

Generate clusters of data points from Gaussian distribution with given parameters

Description

Generate clusters of data points from Gaussian distribution with given parameters

Usage

```
gaussian_clusters_with_param(n, center, sigma)
```

Arguments

n	vector of number of data points in each cluster The length of n should be equal to the number of clusters.
center	matrix of centers Ncluster x dim
sigma	list of covariance matrices dim X dim. The length of sigma should be equal to the number of clusters.

Value

matrix of Nsamples x (dim + 1). The last column is cluster labels.

Examples

gaussian_mixture_clusters

Generate clusters of data points from Gaussian-mixture-model distributions with randomly generated parameters

Description

Generate clusters of data points from Gaussian-mixture-model distributions with randomly generated parameters

Usage

```
gaussian_mixture_clusters(
  n = c(50, 50),
  dim = 2,
  sd.max = 0.1,
  sd.noise = 0.01,
  r.range = c(0.1, 1),
  mixture.range = c(1, 4),
  mixture.sep = 0.5
)
```

Arguments

n	vector of number of data points in each cluster The length of n should be equal to the number of clusters.
dim	number of dimensions
sd.max	maximum standard deviation of clusters
sd.noise	standard deviation of the added noise
r.range	the range (min, max) of distance of cluster centers from the origin
mixture.range	range (min, max) of the number of Gaussian-mixtures.
mixture.sep	scaler indicating the separability between the mixtures.

Value

a list of data points (X) and cluster labels (class)

Examples

```
data = gaussian_mixture_clusters()
X = data$X
y = data$class
```

generate_data_prtrb Generation mechanism for data perturbation consensus clustering

Description

Generation mechanism for data perturbation consensus clustering

12

```
generate_data_prtrb
```

Usage

```
generate_data_prtrb(
   X,
   cluster.method = "pam",
   k = 3,
   resample.ratio = 0.7,
   rep = 10,
   distance.method = "euclidian",
   adj.conv = TRUE,
   func
)
```

Arguments

input data Nsample x Nfeatures		
<pre>base clustering method: c("hclust", "spectral", "pam", "custom")</pre>		
number of clusters		
the data ratio to use at each itteration.		
maximum number of itterations at each max.cluster		
distance.method		
<pre>method for distance calculation: "euclidian", "cosine", "maximum", "manhattan", "canberra", "binary", "minkowski".</pre>		
binary value to apply soft thresholding (default=TRUE)		
user-defined function required if cluster.method = "custom". The function needs two inputs of X and k		

Details

Performs clustering on the purturbed samples set Monti et al. (2003) consensus clustering algorithm

Value

matrix of clusterings Nsample x Nrepeat

```
X = gaussian_clusters()$X
Clusters = generate_data_prtrb(X)
```

```
generate_gaussian_data
```

Generate a set of data points from Gaussian distribution

Description

Generate a set of data points from Gaussian distribution

Usage

```
generate_gaussian_data(n, center = 0, sigma = 1, label = NA)
```

Arguments

n	number of generated data points
center	data center of desired dimension
sigma	covariance matrix
label	cluster label

Value

Generated data points from Gaussian distribution with given parameters

Examples

```
generate_gaussian_data(10, center=c(0,0), sigma=diag(c(1,1)), label=1)
```

generate_method_prtrb Multiple method generation

Description

Multiple method generation

Usage

```
generate_method_prtrb(
   X,
   cluster.method = "pam",
   range.k = c(2, 5),
   sample.k.method = "random",
   rep = 10,
   distance.method = "euclidian",
   func
)
```

Arguments

input data Nsample x Nfeatures
<pre>base clustering method: c("kmeans", "pam", "custom")</pre>
vector of minimum and maximum values for k c(min, max)
1
method for the choice of k at each repeat c("random", "silhouette")
number of repeats
1
<pre>method for distance calculation: "euclidian", "maximum", "manhattan", "canberra", "binary", "minkowski".</pre>
user-definrd function required if cluster.method = "custom". The function needs two inputs of X and k.

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then clustering is applied and result is returned.

Value

matrix of clusterings Nsample x Nrepeat

Examples

X = gaussian_clusters()\$X Clusters = generate_method_prtrb(X)

generate_multiview Multiview generation

Description

Multiview generation

Usage

```
generate_multiview(
   X,
   cluster.method = "pam",
   range.k = c(2, 5),
   sample.k.method = "random",
   rep = 10,
   distance.method = "euclidian",
   sample.set = NA,
   func
)
```

Arguments

Х	list of input data matrices of Sample x feature or distance matrices. The length of X is equal to Nviews	
cluster.method	<pre>base clustering method: c("kmeans", "pam", "custom")</pre>	
range.k	vector of minimum and maximum values for k c(min, max)	
sample.k.method	1	
	method for the choice of k at each repeat c("random", "silhouette")	
rep	number of repeats	
distance.method		
	<pre>method for distance calculation: "euclidian", "maximum", "manhattan", "canberra", "binary", "minkowski".</pre>	
sample.set	vector of samples the clustering is being applied on. can be names or indices. If sample.set is NA, it considers all the datasets have the same samples with the same order	
func	user-definrd function required if cluster.method = "custom". The function needs two inputs of X and k.	

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then clustering is applied and result is returned.

Value

matrix of clusterings Nsample x Nrepeat

Examples

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2),
sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))
X_observation = data[["observation"]]
Clusters = multiview_pam_gen(X_observation)
```

hir_clust_from_adj_mat

Hierarchical clustering from adjacency matrix

Description

Hierarchical clustering from adjacency matrix

indicator_matrix

Usage

```
hir_clust_from_adj_mat(
   adj.mat,
   k = 2,
   alpha = 1,
   adj.conv = TRUE,
   method = "ward.D"
)
```

Arguments

adj.mat	adjacency matrix
k	number of clusters (default=2)
alpha	soft threshold (considered if adj.conv = TRUE) (default=1)
adj.conv	binary value to apply soft thresholding (default=TRUE)
method	distance method (default: ward.D)

Details

apply PAM (k-medoids) clustering on the adjacency matrix

Value

vector of clusters

Examples

indicator_matrix Build indicator matrix

Description

Build indicator matrix

Usage

```
indicator_matrix(clusters)
```

Arguments

clusters

a vector of clusterings. Zero elements mean that the sample was absent during clustering

Details

Indicator matrix (I) is a binary matrix N-by-N I[i,j] = 1 if sample i and j co-exist for clustering ref: Monti et al. (2003) "Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data", Machine Learning

Value

Indicator matrix

Examples

ind_mat = indicator_matrix(c(1,1,1,0,0,1))

label_similarity Similarity between different clusters

Description

Similarity between different clusters

Usage

```
label_similarity(x1, x2)
```

Arguments

x1	clustering vector 1 Zero elements are are considered as unclustered samples
x2	clustering vector 2 Zero elements are are considered as unclustered samples

Details

When performing several clustering, the cluster labels may not match with each other. To find correspondences between clusters, the similarity between different labels will be calculated.

Value

matrix of similarities between clustering labels

Examples

X = gaussian_clusters()\$X
x1 = kmeans(X, 5)\$cluster
x2 = kmeans(X, 5)\$cluster
Sim = label_similarity(x1, x2)

Logit

Description

Logit function

Usage

Logit(x)

Arguments ×

numerical scaler input

Value

Logit(x) = log(1*x/(1-x))

Examples

y = Logit(0.5)

majority_voting Consensus mechanism based on majority voting

Description

Consensus mechanism based on majority voting

Usage

majority_voting(X)

Arguments X

clustering matrix of Nsamples x Nclusterings. Zero elements are are considered as unclustered samples

Details

Perform majority voting as a consensus mechanism.

Value

the vector of consensus clustering result

Examples

```
X = gaussian_clusters()$X
x1 = kmeans(X, 5)$cluster
x2 = kmeans(X, 5)$cluster
x3 = kmeans(X, 5)$cluster
clusters = majority_voting(cbind(x1,x2,x3))
```

multiview_clusters	Generate multiview clusters from Gaussian distributions with ran-
	domly generated parameters

Description

Generate multiview clusters from Gaussian distributions with randomly generated parameters

Usage

```
multiview_clusters(
    n = c(50, 50),
    hidden.dim = 2,
    observed.dim = c(2, 2, 3),
    sd.max = 0.1,
    sd.noise = 0.01,
    hidden.r.range = c(0.1, 1)
)
```

Arguments

n	vector of number of data points in each cluster The length of n should be equal to the number of clusters.
hidden.dim	scaler value of dimensions of the hidden state
observed.dim	vector of number of dimensions of the generate clusters. The length of observed.dim should be equal to the number of clusters.
sd.max	maximum standard deviation of clusters
sd.noise	standard deviation of the added noise
hidden.r.range	the range (min, max) of distance of cluster centers from the origin in the hidden space.

Value

a list of data points (X) and cluster labels (class)

Examples

```
data = multiview_clusters()
```

20

multiview_cluster_gen Multiview cluster generation

Description

Multiview cluster generation

Usage

```
multiview_cluster_gen(
   X,
   func,
   rep = 10,
   param,
   is.distance = FALSE,
   sample.set = NA
}
```

)

Arguments

Х	List of input data matrices of Sample x feature or distance matrices. The length of X is equal to Nviews
func	custom function that accepts X and a parameter that return a vector of clusterings. cluster_func <- function(X, param)
rep	number of repeats
param	vector of parameters
is.distance	binary balue indicating if the input X[i] is distance
sample.set	vector of samples the clustering is being applied on. can be names or indices. if sample.set is NA, it considers all the datasets have the same samples with the same order

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then clustering is applied and result is returned.

Value

matrix of clusterings Nsample x (Nrepeat x Nviews)

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2),
sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))
X_observation = data[["observation"]]
cluster_func = function(X,rep,param){return(multi_kmeans_gen(X,rep=rep,range.k=param))}
Clusters = multiview_cluster_gen(X_observation, func = cluster_func, rep = 10, param = c(2,4))
```

multiview_kmeans_gen Multiview K-means generation

Description

Multiview K-means generation

Usage

```
multiview_kmeans_gen(X, rep = 10, range.k = c(2, 5), method = "random")
```

Arguments

Х	List of input data matrices of Sample x feature. The length of X is equal to Nviews
rep	number of repeats
range.k	vector of minimum and maximum values for k c(min, max)
method	method for the choice of k at each repeat c("random", "silhouette")

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then k-means clustering is applied and result is returned.

Value

matrix of clusterings Nsample x (Nrepeat x Nviews)

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2),
sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))
X_observation = data[["observation"]]
Clusters = multiview_kmeans_gen(X_observation)
```

multiview_pam_gen Multiview PAM (K-medoids) generation

Description

Multiview PAM (K-medoids) generation

Usage

```
multiview_pam_gen(
    X,
    rep = 10,
    range.k = c(2, 5),
    is.distance = FALSE,
    method = "random",
    sample.set = NA
)
```

Arguments

Х	List of input data matrices of Sample x feature or distance matrices. The length of X is equal to Nviews
rep	number of repeats
range.k	vector of minimum and maximum values for k c(min, max)
is.distance	binary balue indicating if the input X is distance
method	method for the choice of k at each repeat c("random", "silhouette")
sample.set	vector of samples the clustering is being applied on. can be names or indices. if sample.set is NA, it considers all the datasets have the same samples with the same order

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then PAM clustering is applied and result is returned.

Value

matrix of clusterings Nsample x (Nrepeat x Nviews)

```
data = multiview_clusters (n = c(40,40,40), hidden.dim = 2, observed.dim = c(2,2,2),
sd.max = .1, sd.noise = 0, hidden.r.range = c(.5,1))
X_observation = data[["observation"]]
Clusters = multiview_pam_gen(X_observation)
```

Description

Multiple cluster generation

Usage

```
multi_cluster_gen(X, func, rep = 10, param, method = "random")
```

Arguments

Х	input data Nsample x Nfeatures or a distance matrix
func	custom function that accepts X and a parameter that return a vector of clusterings. cluster_func <- function(X, param)
rep	number of repeats
param	vector of parameters
method	method for the choice of k at each repeat c("random", "silhouette")

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then clustering is applied and result is returned.

Value

matrix of clusterings Nsample x Nrepeat

```
X = gaussian_clusters()$X
cluster_func = function(X, k){return(stats::kmeans(X, k)$cluster)}
Clusters = multi_cluster_gen(X, cluster_func, param = c(2,3))
```

multi_kmeans_gen Multiple K-means generation

Description

Multiple K-means generation

Usage

multi_kmeans_gen(X, rep = 10, range.k = c(2, 5), method = "random")

Arguments

Х	input data Nsample x Nfeatures
rep	number of repeats
range.k	vector of minimum and maximum values for k c(min, max)
method	method for the choice of k at each repeat c("random", "silhouette")

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then k-means clustering is applied and result is returned.

Value

matrix of clusterings Nsample x Nrepeat

Examples

```
X = gaussian_clusters()$X
Clusters = multi_kmeans_gen(X)
```

multi_pam_gen

Multiple PAM (K-medoids) generation

Description

Multiple PAM (K-medoids) generation

Usage

```
multi_pam_gen(
    X,
    rep = 10,
    range.k = c(2, 5),
    is.distance = FALSE,
    method = "random"
)
```

Arguments

Х	input data Nsample x Nfeatures or distance matrix.
rep	number of repeats
range.k	vector of minimum and maximum values for k c(min, max)
is.distance	binary balue indicating if the input X is distance
method	<pre>method for the choice of k at each repeat c("random", "silhouette")</pre>

Details

At each repeat, k is selected randomly or based on the best silhouette width from a discrete uniform distribution between range.k[1] and range.k[2]. Then PAM clustering is applied and result is returned.

Value

matrix of clusterings Nsample x Nrepeat

Examples

X = gaussian_clusters()\$X
Clusters = multi_pam_gen(X)

pam_clust_from_adj_mat

PAM (k-medoids) clustering from adjacency matrix

Description

PAM (k-medoids) clustering from adjacency matrix

Usage

```
pam_clust_from_adj_mat(adj.mat, k = 2, alpha = 1, adj.conv = TRUE)
```

26

Arguments

adj.mat	adjacency matrix
k	number of clusters (default=2)
alpha	soft threshold (considered if adj.conv = TRUE) (default=1)
adj.conv	binary value to apply soft thresholding (default=TRUE)

Details

apply PAM (k-medoids) clustering on the adjacency matrix

Value

vector of clusters

Examples

spect_clust_from_adj_mat

Spectral clustering from adjacency matrix

Description

Spectral clustering from adjacency matrix

Usage

```
spect_clust_from_adj_mat(
   adj.mat,
   k = 2,
   max.eig = 10,
   alpha = 1,
   adj.conv = TRUE,
   do.plot = FALSE
)
```

Arguments

adj.mat	adjacency matrix
k	number of clusters (default=2)
max.eig	maximum number of eigenvectors in use (dafaut = 10).
alpha	soft threshold (considered if $adj.conv = TRUE$) (default = 1)
adj.conv	binary value to apply soft thresholding (default = TRUE)
do.plot	binary value to do plot (dafaut = FALSE)

Details

apply PAM (k-medoids) clustering on the adjacency matrix

Value

vector of clusters

Examples

Index

adj_conv, 2 adj_mat, 3 cc_cluster_count, 3 cluster_relabel, 4 coCluster_matrix, 5 connectivity_matrix, 6 consensus_matrix, 6 consensus_matrix_data_prtrb, 8 consensus_matrix_multiview, 9 gaussian_clusters, 10 gaussian_clusters_with_param, 11 gaussian_mixture_clusters, 11 generate_data_prtrb, 12 generate_gaussian_data, 14 generate_method_prtrb, 14 generate_multiview, 15 hir_clust_from_adj_mat, 16 indicator_matrix, 17 label_similarity, 18 Logit, 19majority_voting, 19 multi_cluster_gen, 24 multi_kmeans_gen, 25 multi_pam_gen, 25 multiview_cluster_gen, 21 multiview_clusters, 20 multiview_kmeans_gen, 22 multiview_pam_gen, 23 pam_clust_from_adj_mat, 26

spect_clust_from_adj_mat, 27