Package ‘BatchExperiments’

January 20, 2025

Title Statistical Experiments on Batch Computing Clusters

Description Extends the BatchJobs package to run statistical experiments on
batch computing clusters. For further details see the project web page.

Author Bernd Bischl <bernd_bischl@gmx.net>,
Michel Lang <michellang@gmail.com>,
Olaf Mersmann <olafm@p-value.net>

Maintainer Michel Lang <michellang@gmail.com>
URL https://github.com/tudo-r/BatchExperiments

BugReports https://github.com/tudo-r/BatchExperiments/issues
License BSD_3_clause + file LICENSE
Depends R (>=3.0.0), BatchJobs (>=1.7)

Imports backports, utils, stats, checkmate (>= 1.8.5), BBmisc (>=
1.11), DBI, RSQLite (>= 2.0), data.table (>= 1.9.6)

Suggests plyr, randomForest, rpart, testthat
Version 1.4.3

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-03-21 11:00:02 UTC

Contents

addAlgorithm L
addExperiments L e e e
addProblem
BatchExperiments e
ExperimentJob
findExperiments
generateProblemlInstance
getAlgorithmo

https://github.com/tudo-r/BatchExperiments
https://github.com/tudo-r/BatchExperiments/issues

2 addAlgorithm
getAlgorithmIds L 11
getExperimentParts L 11
getlndex 12
getJobs.ExperimentRegistry L 13
getProblem 14
getProblemlIds L 15
getResultVars L 15
makeDesign e e e 16
makeExperimentRegistry 17
reduceResultsExperiments L Lo 19
reduceResultsExperimentsParallel 20
removeAlgorithm 21
removeExperiments Lo 22
removeProblem o 23
summarizeExperiments Lo 23

Index 25

addAlgorithm Add an algorithm to registry.

Description

Add an algorithm to registry and stores it on disk.
Usage
addAlgorithm(reg, id, fun, overwrite = FALSE)
Arguments
reg [ExperimentRegistry]
Registry.
id [character(1)]
Name of algorithm.
fun [function(job, static, dynamic, ...)]
Function which applies the algorithm to a problem instance. Takes a Job object,
the static problem part and the evaluated dynamic problem part as arguments.
You may omit any of job, static or dynamic. In this case, the respective
arguments will not get passed to fun. Further parameters from Design are passed
to ... argument. If you are using multiple result files this function must return a
named list.
To retrieve job informations from the job object see the documentation on Ex-
perimentJob.
overwrite [logical(1)]

Overwrite the algorithm file if it already exists? Default is FALSE.

addExperiments 3

Value

[character(1)]. Invisibly returns the id.

See Also
Other add: addExperiments(), addProblem()

addExperiments Add experiemts to the registry.

Description

Add experiments for running algorithms on problems to the registry, so they can be executed later.

Usage

addExperiments(
reg,
prob.designs,
algo.designs,

repls = 1L,
skip.defined = FALSE
)
Arguments
reg [ExperimentRegistry]

Registry.

prob.designs [character | Design | list of Design]
Either problem ids, a single problem design or a list of problem designs, the
latter two created by makeDesign. If missing, all problems are selected (without
associating a design), and this is the default.

algo.designs [character | Design | list of Design]
Either algorithm ids, a single algorithm design or a list of algorithm designs,
the latter two created by makeDesign. If missing, all algorithms are selected
(without associating a design), and this is the default.

repls [integer(1)]
Number of replications.
Default is 1.

skip.defined [logical]
If set to TRUE, already defined experiments get skipped. Otherwise an error is

thrown.
Default is FALSE.

Value

Invisibly returns vector of ids of added experiments.

4 addExperiments

See Also
Other add: addAlgorithm(), addProblem()

Examples

EXAMPLE 1
reg = makeExperimentRegistry(id = "examplel”, file.dir = tempfile())

Define a problem:
Subsampling from the iris dataset.
data(iris)
subsample = function(static, ratio) {
n = nrow(static)
train = sample(n, floor(n * ratio))
test = setdiff(seq(n), train)
list(test = test, train = train)
3
addProblem(reg, id = "iris"”, static = iris,
dynamic = subsample, seed = 123)

Define algorithm "tree”:
Decision tree on the iris dataset, modeling Species.

tree.wrapper = function(static, dynamic, ...) {
library(rpart)
mod = rpart(Species ~ ., data = static[dynamic$train, 1, ...)

pred = predict(mod, newdata = static[dynamic$test, 1, type = "class")
table(static$Species[dynamic$test], pred)

3
addAlgorithm(reg, id = "tree"”, fun = tree.wrapper)

Define algorithm "forest”:
Random forest on the iris dataset, modeling Species.

forest.wrapper = function(static, dynamic, ...) {
library(randomForest)
mod = randomForest(Species ~ ., data = static, subset = dynamic$train, ...)

pred = predict(mod, newdata = static[dynamic$test, 1)
table(static$Species[dynamic$test], pred)

3
addAlgorithm(reg, id = "forest”, fun = forest.wrapper)

Define problem parameters:
pars = list(ratio = c(0.67, 0.9))
iris.design = makeDesign("iris"”, exhaustive = pars)

Define decision tree parameters:
pars = list(minsplit = c(10, 20), cp = c(0.01, 0.1))
tree.design = makeDesign("tree"”, exhaustive = pars)

Define random forest parameters:
pars = list(ntree = c(100, 500))
forest.design = makeDesign("forest”, exhaustive = pars)

addExperiments

Add experiments to the registry:
Use previously defined experimental designs.
addExperiments(reg, prob.designs = iris.design,
algo.designs = list(tree.design, forest.design),
repls = 2) # usually you would set repls to 100 or more.

Optional: Short summary over problems and algorithms.
summarizeExperiments(reg)

Optional: Test one decision tree job and one expensive (ntree = 1000)
random forest job. Use findExperiments to get the right job ids.
do.tests = FALSE
if (do.tests) {

id1 = findExperiments(reg, algo.pattern = "tree"”)[1]

id2 = findExperiments(reg, algo.pattern = "forest”,

algo.pars = (ntree == 1000))[1]

testJob(reg, id1)

testJob(reg, id2)
}

Submit the jobs to the batch system
submitJobs(reg)

Calculate the misclassification rate for all (already done) jobs.
reduce = function(job, res) {

n = sum(res)

list(mcr = (n-sum(diag(res)))/n)

}
res = reduceResultsExperiments(reg, fun = reduce)
print(res)

Aggregate results using 'ddply' from package 'plyr':
Calculate the mean over all replications of identical experiments
(same problem, same algorithm and same parameters)

library(plyr)

vars = setdiff(names(res), c("repl”, "mcr"))

aggr = ddply(res, vars, summarise, mean.mcr = mean(mcr))
print(aggr)

Not run:

EXAMPLE 2 ##3#

define two simple test functions
testfunl = function(x) sum(x*2)

testfun2 = function(x) -exp(-sum(abs(x)))

Define ExperimentRegistry:
reg = makeExperimentRegistry("example@2"”, seed = 123, file.dir = tempfile())

Add the testfunctions to the registry:
addProblem(reg, "testfunl1”, static = testfunl)
addProblem(reg, "testfun2", static = testfun2)

Use SimulatedAnnealing on the test functions:

6 addProblem

addAlgorithm(reg, "sann”, fun = function(static, dynamic) {
upp = rep(10, 2)
low = -upp
start = sample(c(-10, 10), 2)
res = optim(start, fn = static, lower = low, upper = upp, method = "SANN")

res = res[c("par”, "value”, "counts”, "convergence")]
res$start = start
return(res)

by

add experiments and submit
addExperiments(reg, repls = 10)
submitJobs(reg)

Gather informations from the experiments, in this case function value
and whether the algorithm convergenced:

reduceResultsExperiments(reg, fun = function(job, res) res[c("value”, "convergence")])

End(Not run)

addProblem Add a problem to registry.

Description

Add a algorithm to problem and stores it on disk.

Usage

addProblem(
reg,
id,
static = NULL,
dynamic = NULL,

seed = NULL,
overwrite = FALSE
)
Arguments
reg [ExperimentRegistry]
Registry.
id [character(1)]
Name of problem.
static [any]

Static part of problem that never changes and is not dependent on parameters.
Default is NULL.

BatchExperiments 7

dynamic [function(job, static, ...)]
R generator function that creates dynamic / stochastic part of problem instance,
which might be dependent on parameters. First parameter job is a Job object,
second is static problem part static. Further parameters from design are passed
to ... argument on instance creation time. The arguments job and static may
be omitted. To retrieve job informations from the job object see the documen-
tation on ExperimentJob. Default is NULL.

seed [integer(1)]

Start seed for this problem. This allows the “synchronization” of a stochas-
tic problem across algorithms, so that different algorithms are evaluated on the
same stochastic instance. The seeding mechanism works as follows, if a prob-
lem seed is defined: (1) Before the dynamic part of a problem is instantiated,
the seed of the problem + replication - 1 is set, so for the first replication the
exact problem seed is used. (2) The stochastic part of the problem is instan-
tiated (3) From now on the usual experiment seed of the registry is used, see
ExperimentRegistry. If seed is set to NULL this extra problem seeding is
switched off, meaning different algorithms see different stochastic versions of
the same problem. Default is NULL.

overwrite [logical(1)]
Overwrite the problem file if it already exists? Default is FALSE.

Value

[character(1)]. Invisibly returns the id.

See Also

Other add: addAlgorithm(), addExperiments()

BatchExperiments The BatchExperiments package

Description

Extends the BatchJobs package to run statistical experiments on batch computing clusters.

Additional information

Homepage: https://github.com/tudo-r/BatchExperiments
Wiki: https://github.com/tudo-r/BatchExperiments/wiki

https://github.com/tudo-r/BatchExperiments
https://github.com/tudo-r/BatchExperiments/wiki

8 findExperiments

ExperimentJob ExperimentJob

Description

You can access job properties using the job object which is optionally passed to dynamic problem
functions and algorithms. The object is a named list with the following elements:

id [integer (1) :] Job ID.

prob.id[character (1) :] Problem ID.

prob.pars[list :] Problem parameters as named list.

algo.id [character(1) :] algo.idAlgorithm ID.

algo.pars[list :] Algorithm parameters as named list.

repl [integer (1) :] Replication number of this experiment.

seed [integer (1) :] Seed set right before algorithm execution.

prob.seed [integer (1) :] Seed set right before generation of problem instance.

findExperiments Find ids of experiments that match a query.

Description

Find job ids by querying problem/algorithm ids, problem/algorithm parameters or replication num-
ber.

Usage

findExperiments(
reg,
ids,
prob.pattern,
prob.pars,
algo.pattern,
algo.pars,
repls,
match.substring = TRUE,
regexp = FALSE

findExperiments 9

Arguments
reg [ExperimentRegistry]
Registry.
ids [integer]

Ids of selected experiments to restrict to. Default is all experiments.

prob.pattern [character(1)]
If not missing, all problem ids that match this string are selected.

prob.pars [R expression]
If not missing, all problems whose parameters match the given expression are
selected.

algo.pattern [character(1)]
If not missing, all algorithm ids that match this string are selected.

algo.pars [R expression]
If not missing, all algorithms whose parameters match the given expression are
selected.

repls [integer]

If not missing, restrict to jobs with given replication numbers.

match.substring
[logical(1)]
Is a match in prob.pattern and algo.pattern if the id contains the pattern as
substring or must the id exactly match? Default is TRUE.

regexp [logical(1)]
Are prob.pattern and algo.pattern regular expressions? Note that this is
significantly slower than substring matching. If set to TRUE the argument match. substring
has no effect. Default is FALSE.

Value

[integer]. Ids for experiments which match the query.

Examples

reg = makeExperimentRegistry(id = "examplel”, file.dir = tempfile())

p1 = addProblem(reg, "one", 1)

p2 = addProblem(reg, "two", 2)

a = addAlgorithm(reg, "A", fun = function(static, n) static + n)
addExperiments(reg, algo.design = makeDesign(a, exhaustive = list(n = 1:4)))
findExperiments(reg, prob.pattern = "one")

findExperiments(reg, prob.pattern = "o0")

findExperiments(reg, algo.pars = (n > 2))

10 getAlgorithm

generateProblemInstance
Generate dynamic part of problem.

Description

Calls the dynamic problem function on the static problem part and thereby creates the problem
instance. The seeding mechanism is identical to execution on the slave.

Usage

generateProblemInstance(reg, id)

Arguments
reg [ExperimentRegistry]
Registry.
id [character(1)]
Id of job.
Value

Dynamic part of problem.

getAlgorithm Get algorithm from registry by id.

Description

The requested object is loaded from disk.

Usage
getAlgorithm(reg, id)

Arguments
reg [ExperimentRegistry]
Registry.
id [character(1)]
Id of algorithm.
Value

[Algorithm].

getAlgorithmIds 11

See Also

Other get: getAlgorithmIds(), getExperimentParts(), getJobs.ExperimentRegistry(), getProblemIds(),
getProblem()

getAlgorithmIds Get ids of algorithms in registry.

Description

Get algorithm ids for jobs.

Usage
getAlgorithmIds(reg, ids)

Arguments
reg [ExperimentRegistry]
Registry.
ids [codeinteger]
Job ids to restrict returned algorithm ids to.
Value
[character].
See Also
Other get: getAlgorithm(), getExperimentParts(), getJobs.ExperimentRegistry(), getProblemIds(),
getProblem()
getExperimentParts Get all parts required to run a single job.
Description

Get all parts which define an Experiment.

Usage

getExperimentParts(reg, id)

12 getIndex

Arguments
reg [ExperimentRegistry]
Registry.
id [integer(1)]
Id of a job.
Value

[named list]. Returns the Job, Problem, Instance and Algorithm.

See Also

Other get: getAlgorithmIds(), getAlgorithm(), getJobs.ExperimentRegistry(), getProblemIds(),
getProblem()

getIndex Group experiments.

Description

Creates a list of factor to use in functions like tapply, by or aggregate.

Usage
getIndex(
reg,
ids,
by.prob = FALSE,
by.algo = FALSE,
by.repl = FALSE,

by.prob.pars,
by.algo.pars,
enclos = parent.frame()

)
Arguments
reg [ExperimentRegistry]
Registry.
ids [integer]
If not missing, restict grouping to this subset of experiment ids.
by.prob [logical]
Group experiments by problem. Default is FALSE.
by.algo [logical]

Group experiments by algorithm. Default is FALSE.

getJobs.ExperimentRegistry 13

by.repl [logical]
Group experiments by replication. Default is FALSE.

by.prob.pars [R expression]
If not missing, group experiments by this R expression. The expression is eval-
uated in the environment of problem parameters and converted to a factor using
as.factor.

by.algo.pars [R expression]
If not missing, group experiments by this R expression. The expression is evalu-
ated in the environment of algorithm parameters and converted to a factor using
as.factor.

enclos [environment]
Enclosing frame for evaluation of parameters used by by . prob. pars and by.algo.pars,
see eval. Defaults to the parent frame.

Value

[1ist]. List of factors.

Examples

create a registry and add problems and algorithms

reg = makeExperimentRegistry("getIndex"”, file.dir = tempfile(""))

addProblem(reg, "prob”, static = 1)

addAlgorithm(reg, "f@", function(static, dynamic) static)

addAlgorithm(reg, "f1", function(static, dynamic, i, k) static * i*k)

ad = list(makeDesign("f0"), makeDesign("f1", exhaustive = list(i = 1:5, k = 1:3)))
addExperiments(reg, algo.designs = ad)

submitJobs(reg)

get grouped job ids

ids = getJobIds(reg)

by(ids, getIndex(reg, by.prob = TRUE, by.algo = TRUE), identity)
ids = findExperiments(reg, algo.pattern = "f1")

by(ids, getIndex(reg, ids, by.algo.pars (k == 1)), identity)

groupwise reduction

ids = findExperiments(reg, algo.pattern = "f1")

showStatus(reg, ids)

f = function(aggr, job, res) aggr + res

by(ids, getIndex(reg, ids, by.algo.pars = k), reduceResults, reg = reg, fun = f)
by(ids, getIndex(reg, ids, by.algo.pars = i), reduceResults, reg = reg, fun = f)

getJobs.ExperimentRegistry
Get jobs (here: experiments) from registry by id.

Description

Constructs an Experiment for each job id provided.

14 getProblem

Usage

S3 method for class 'ExperimentRegistry'
getJobs(reg, ids, check.ids = TRUE)

Arguments
reg [ExperimentRegistry]
Registry.
ids [integer]
Ids of job. Default is all jobs.
check.ids [logical(1)]
Check the job ids? Default is TRUE.
Value

[list of Experiment].

See Also
Other get: getAlgorithmIds(), getAlgorithm(), getExperimentParts(), getProblemIds(),
getProblem()
getProblem Get problem from registry by id.
Description

The requested object is loaded from disk.

Usage
getProblem(reg, id)

Arguments
reg [ExperimentRegistry]
Registry.
id [character(1)]
Id of problem.
Value
[Problem].
See Also

Other get: getAlgorithmIds(), getAlgorithm(), getExperimentParts(), getJobs.ExperimentRegistry(),
getProblemIds()

getProblemlIds 15

getProblemIds Get ids of problems in registry.

Description

Get problem ids for jobs.

Usage
getProblemIds(reg, ids)

Arguments
reg [ExperimentRegistry]
Registry.
ids [codeinteger]
Job ids to restrict returned problem ids to.
Value
[character].
See Also
Other get: getAlgorithmIds(), getAlgorithm(), getExperimentParts(), getJobs.ExperimentRegistry(),
getProblem()
getResultVars Get variable groups of reduced results.
Description

Useful helper for e.g. package plyr and such.

Usage
getResultVars(data, type = "group")

Arguments
data [ReducedResultsExperiments]
Result data.frame from reduceResul tsExperiments.
type [character(1)]

Can be “prob” (prob + pars), “prob.pars” (only problem pars), “algo” (algo +
pars), “algo.pars” (only algo pars), “group” (prob + problem pars + algo + algo
pars), “result” (result column names). Default is “group”.

16 makeDesign

Value

[character]. Names of of columns.

Examples

reg = makeExperimentRegistry(”BatchExample”, seed = 123, file.dir = tempfile())
addProblem(reg, "p1", static = 1)
addProblem(reg, "p2", static = 2)
addAlgorithm(reg, id = "al",

fun = function(static, dynamic, alpha) c(y = staticxalpha))
addAlgorithm(reg, id = "a2",

fun = function(static, dynamic, alpha, beta) c(y = static*alphatbeta))
adl = makeDesign("al1"”, exhaustive = list(alpha = 1:2))
ad2 = makeDesign("a2", exhaustive = list(alpha = 1:2, beta = 5:6))
addExperiments(reg, algo.designs = list(adl, ad2), repls = 2)
submitJobs(reg)
data = reduceResultsExperiments(reg)
library(plyr)
ddply(data, getResultVars(data, "group"), summarise, mean_y = mean(y))

makeDesign Create parameter designs for problems and algorithms.

Description

Create a parameter design for either a problem or an algorithm that you can use in addExperiments.
All parameters in design and exhaustive be “primitive” in the sense that either is.atomic is TRUE
or is.factor is TRUE.

Be aware of R’s default behaviour of converting strings into factors if you use the design parameter.
See option stringsAsFactors in data. frame to turn this off.

Usage

makeDesign(id, design = data.frame(), exhaustive = list())

Arguments
id [character(1)]
Id of algorithm or problem.
design [data. frame]
The design. Must have named columns corresponding to parameters. Default is
an empty data. frame().
exhaustive [list]

Named list of parameters settings which should be exhaustively tried. Names
must correspond to parameters. Default is empty list.

makeExperimentRegistry 17

Value

[Design].

Examples

Not run:
simple design for algorithm
design = makeDesign("al")

n

al” with no parameters:

design for problem "p1" using predefined parameter combinations
design = makeDesign("p1"”, design = data.frame(alpha = 0:1, beta = c(0.1, 0.2)))

creating a list of designs for several algorithms at once, all using the same
exhaustive grid of parameters
designs = lapply(c("al”, "a2", "a3"), makeDesign,

exhaustive = list(alpha = 0:1, gamma = 1:10/10))

End(Not run)

makeExperimentRegistry
Construct a registry object for experiments.

Description

Note that if you don’t want links in your paths (file.dir, work.dir) to get resolved and have
complete control over the way the path is used internally, pass an absolute path which begins with
‘G/79.

Every object is a list that contains the passed arguments of the constructor.

Usage

makeExperimentRegistry(
id = "BatchExperimentRegistry",

file.dir,

sharding = TRUE,

work.dir,
multiple.result.files = FALSE,
seed,

packages = character(QL),
src.dirs = character(QL),
src.files = character(oL),
skip = TRUE

18 makeExperimentRegistry

Arguments

id [character(1)]
Name of registry. Displayed e.g. in mails or in cluster queue. Default is “Batch-
ExperimentRegistry”.

file.dir [character(1)]
Path where files regarding the registry / jobs should be saved. Default is dQuote<name
of registry>_files in current working directory.

sharding [logical(1)]
Enable sharding to distribute result files into different subdirectories? Important
if you have many experiments. Default is TRUE.

work.dir [character(1)]

Working directory for R process when experiment is executed. Default is the
current working directory when registry is created.

multiple.result.files
[logical(1)]
Should a result file be generated for every list element of the returned list of
the algorithm function? Note that your algorithm functions in addAlgorithm
must return named lists if this is set to TRUE. The result file will be named
“<id>-result-<element name>.RData” instead of “<id>-result.RData”. Default
is FALSE.

seed [integer(1)]
Start seed for experiments. The first experiment in the registry will use this
seed, for the subsequent ones the seed is incremented by 1. Default is a random
number from 1 to .Machine$integer.max/2.

packages [character]
Packages that will always be loaded on each node. Default is character(@).

src.dirs [character]
Directories relative to your work. dir containing R scripts to be sourced on reg-
istry load (both on slave and master). Files not matching the pattern “\.[Rr]$”
are ignored. Useful if you have many helper functions that are needed during
the execution of your jobs. These files should only contain function definitions
and no executable code. Default is character(0).

src.files [character]
R scripts files relative to your work.dir to be sourced on registry load (both on
slave and master). Useful if you have many helper functions that are needed
during the execution of your jobs. These files should only contain function
definitions and no executable code. Default is character(0).

skip [logical(1)]
Skip creation of a new registry if a registry is found in file.dir. Defaults to
TRUE.
Value

[ExperimentRegistry]

reduceResultsExperiments 19

reduceResultsExperiments
Reduce results into a data.frame with all relevant information.

Description

Generates a data. frame with one row per job id. The columns are: ids of problem and algorithm
(named “prob” and “algo”), one column per parameter of problem or algorithm (named by the
parameter name), the replication number (named “repl”) and all columns defined in the function to
collect the values. Note that you cannot rely on the order of the columns. If a parameter does not
have a setting for a certain job / experiment it is set to NA. Have a look at getResultVars if you
want to use something like ddply on the results.

The rows are ordered as ids and named with ids, so one can easily index them.

Usage
reduceResultsExperiments(
reg,
ids,
part = NA_character_,
fun,

strings.as.factors = FALSE,
block.size,

impute.val,
apply.on.missing = FALSE,
progressbar = TRUE

)
Arguments
reg [ExperimentRegistry]
Registry.
ids [integer]
Ids of selected experiments. Default is all jobs for which results are available.
part [character] Only useful for multiple result files, then defines which result file
part(s) should be loaded. NA means all parts are loaded, which is the default.
fun [function(job, res, ...)]

Function to collect values from job and result res object, the latter from stored
result file. Must return a named object which can be coerced to a data.frame
(e.g. a list). Default is a function that simply returns res which may or may
not work, depending on the type of res. We recommend to always return a
named list.

[any]
Additional arguments to fun.

20

reduceResultsExperimentsParallel

strings.as.factors

block.size

impute.val

[logical(1)] Should all character columns in result be converted to factors?
Default is FALSE.

[integer (1)] Results will be fetched in blocks of this size. Default is max (100,
5 percent of ids).

[named 1ist]

If not missing, the value of impute.val is used as a replacement for the return
value of function fun on missing results. An empty list is allowed.

apply.on.missing

progressbar

Value

[logical(1)]

Apply the function on jobs with missing results? The argument “res” will be
NULL and must be handled in the function. This argument has no effect if
impute.val is set. Default ist FALSE.

[logical(1)]

Set to FALSE to disable the progress bar. To disable all progress bars, see
makeProgressBar.

[data.frame]. Aggregated results, containing problem and algorithm paramaters and collected

values.

reduceResultsExperimentsParallel

Reduce very many results in parallel.

Description

Basically the same as reduceResultsExperiments but creates a few (hopefully short) jobs to
reduce the results in parallel. The function internally calls batchMapQuick, does “busy-waiting”
till all jobs are done and cleans all temporary files up.

The rows are ordered as ids and named with ids, so one can easily index them.

Usage

reduceResultsExperimentsParallel(

reg,
ids,

part = NA_character_,

fun,

L

timeout = 604800L,

njobs = 20L,

strings.as.factors = FALSE,

impute.val,

apply.on.missing = FALSE,

progressbar

= TRUE

removeAlgorithm

Arguments

reg
ids
part

fun

timeout

njobs

21

[ExperimentRegistry]

Registry.

[integer]

Ids of selected experiments. Default is all jobs for which results are available.

[character] Only useful for multiple result files, then defines which result file
part(s) should be loaded. NA means all parts are loaded, which is the default.

[function(job, res, ...)]

Function to collect values from job and result res object, the latter from stored
result file. Must return a named object which can be coerced to a data.frame
(e.g. a list). Default is a function that simply returns res which may or may
not work, depending on the type of res. We recommend to always return a
named list.

[any]
Additional arguments to fun.

[integer(1)] Seconds to wait for completion. Passed to waitForJobs. Default
is 648400 (one week).

[integer(1)] Number of parallel jobs to create. Default is 20.

strings.as.factors

impute.val

[logical(1)] Should all character columns in result be converted to factors?
Default is FALSE.

[named 1list]
If not missing, the value of impute.val is used as a replacement for the return
value of function fun on missing results. An empty list is allowed.

apply.on.missing

progressbar

Value

[logical(1)]

Apply the function on jobs with missing results? The argument “res” will be
NULL and must be handled in the function. This argument has no effect if
impute.val is set. Default ist FALSE.

[logical(1)]

Set to FALSE to disable the progress bar. To disable all progress bars, see
makeProgressBar.

[data.frame]. Aggregated results, containing problem and algorithm paramaters and collected

values.

removeAlgorithm

Remove algorithm from registry.

Description

THIS DELETES ALL FILES REGARDING THIS ALGORITHM, INCLUDING ALL JOBS AND

RESULTS!

22 removeExperiments

Usage
removeAlgorithm(reg, id, force = FALSE)

Arguments
reg [ExperimentRegistry]
Registry.
id [character(1)]
Id of algorithm.
force [logical(1)]
Also remove jobs which seem to be still running. Default is FALSE.
Value
Nothing.
See Also

Other remove: removeExperiments(), removeProblem()

removeExperiments Remove jobs from registry.

Description

THIS DELETES ALL FILES REGARDING THE JOBS, INCLUDING RESULTS! If you really
know what you are doing, you may set force to TRUE to omit sanity checks on running jobs.

Usage

removeExperiments(reg, ids, force = FALSE)

Arguments
reg [ExperimentRegistry]
Registry.
ids [integer]
Ids of jobs you want to remove. Default is none.
force [logical(1)]
Also remove jobs which seem to be still running. Default is FALSE.
Value

Vector of type integer of removed job ids.

See Also

Other remove: removeAlgorithm(), removeProblem()

removeProblem 23

removeProblem Remove problem from registry.

Description

THIS DELETES ALL FILES REGARDING THIS PROBLEM, INCLUDING ALL JOBS AND
RESULTS!

Usage

removeProblem(reg, id, force = FALSE)

Arguments
reg [ExperimentRegistry]
Registry.
id [character(1)]
Id of problem.
force [logical(1)]
Also remove jobs which seem to be still running. Default is FALSE.
Value
Nothing.
See Also

Other remove: removeAlgorithm(), removeExperiments()

summarizeExperiments Summarize selected experiments.

Description

A data.frame is returned that contains summary information about the selected experiments. The
data.frame is constructed by building the columns “prob, <prob.pars>, algo, <algo.pars>, repl”.
Now only the columns in show will be selected, how many of such experiments exist will be counted
in a new column “.count”.

Usage

summarizeExperiments(reg, ids, show = c("prob”, "algo"))

24 summarizeExperiments
Arguments
reg [ExperimentRegistry]
Registry.
ids [integer]
Selected experiments. Default is all experiments.
show [character]
Should detailed information for each single experiment be printed? Default is
c("prob”, "algo").
Value
[data.frame].
Examples

reg = makeExperimentRegistry(”summarizeExperiments”, seed = 123, file.dir = tempfile())

p1 = addProblem(reg, "p1", static = 1)
al = addAlgorithm(reg, id = "al1"”, fun = function(static, dynamic, alpha, beta) 1)
a2 = addAlgorithm(reg, id = "a2", fun = function(static, dynamic, alpha, gamma) 2)

adl = makeDesign(al, exhaustive = list(alpha = 1:2, beta = 1:2))

ad2 = makeDesign(a2, exhaustive = list(alpha = 1:2, gamma = 7:8))
addExperiments(reg, algo.designs = list(adl, ad2), repls = 2)
print(summarizeExperiments(reg))

print(summarizeExperiments(reg, show = c("prob”, "algo”, "alpha", "gamma")))

Index

+ add
addAlgorithm, 2
addExperiments, 3
addProblem, 6

* get
getAlgorithm, 10
getAlgorithmIds, 11
getExperimentParts, 11
getJobs.ExperimentRegistry, 13
getProblem, 14
getProblemlds, 15

* remove
removeAlgorithm, 21
removeExperiments, 22
removeProblem, 23

addAlgorithm, 2, 4,7, 18
addExperiments, 3,3, 7, 16
addProblem, 3, 4, 6
aggregate, 12
Algorithm, 10, 12
Algorithm (addAlgorithm), 2
as.factor, 13

BatchExperiments, 7
batchMapQuick, 20
by, 12

data.frame, 16
ddply, 19
Design, 2, 3,17

Design (makeDesign), 16

eval, I3

Experiment, 11, 13

Experiment (addExperiments), 3

ExperimentJob, 2, 7, 8

ExperimentRegistry, 2, 3,6, 7,9-12, 14, 15,
18, 19,21-24

ExperimentRegistry
(makeExperimentRegistry), 17

25

factor, 12
findExperiments, 8

generateProblemInstance, 10
getAlgorithm, 10, 11, 12, 14, 15
getAlgorithmlds, 11,11, 12,14, 15
getExperimentParts, 11, 11, 14, 15
getIndex, 12
getJobs.ExperimentRegistry, 11, 12,13,
14, 15
getProblem, 11, 12, 14,14, 15
getProblemlds, /1, 12, 14, 15
getResultVars, 15, 19

Instance, /12
Instance (generateProblemInstance), 10

Job, 2,7,12

makeDesign, 3, 16
makeExperimentRegistry, 17
makeProgressBar, 20, 21

Problem, 12, 14
Problem (addProblem), 6

ReducedResultsExperiments, 15
ReducedResultsExperiments
(reduceResultsExperiments), 19
reduceResultsExperiments, /15, 19, 20
reduceResultsExperimentsParallel, 20
removeAlgorithm, 21, 22, 23
removeExperiments, 22, 22, 23
removeProblem, 22, 23

summarizeExperiments, 23
tapply, 12

waitForJobs, 21

	addAlgorithm
	addExperiments
	addProblem
	BatchExperiments
	ExperimentJob
	findExperiments
	generateProblemInstance
	getAlgorithm
	getAlgorithmIds
	getExperimentParts
	getIndex
	getJobs.ExperimentRegistry
	getProblem
	getProblemIds
	getResultVars
	makeDesign
	makeExperimentRegistry
	reduceResultsExperiments
	reduceResultsExperimentsParallel
	removeAlgorithm
	removeExperiments
	removeProblem
	summarizeExperiments
	Index

