Title: Ancestor Regression
Version: 1.0.1
Description: Causal discovery in linear structural equation models (Schultheiss, and Bühlmann (2023) <doi:10.1093/biomet/asad008>) and vector autoregressive models (Schultheiss, Ulmer, and Bühlmann (2025) <doi:10.1515/jci-2024-0011>) with explicit error control for false discovery, at least asymptotically.
License: GPL-3
Encoding: UTF-8
RoxygenNote: 7.3.2
Imports: tsutils, Rdpack, methods
Suggests: pcalg, MASS, igraph, testthat (≥ 3.0.0)
Config/testthat/edition: 3
RdMacros: Rdpack
URL: http://www.markus-ulmer.ch/AncReg/
NeedsCompilation: no
Packaged: 2025-07-11 13:53:27 UTC; maulmer
Author: Christoph Schultheiss [aut], Markus Ulmer ORCID iD [aut, cre, cph]
Maintainer: Markus Ulmer <markus.ulmer@stat.math.ethz.ch>
Repository: CRAN
Date/Publication: 2025-07-16 15:10:08 UTC

Ancestor Regression

Description

This function performs ancestor regression for linear structural equation models (Schultheiss et al. 2025) and vector autoregressive models (Schultheiss and Bühlmann 2023) with explicit error control for false discovery, at least asymptomatically.

Usage

AncReg(x, degree = 0, targets = colnames(x), f = function(x) x^3)

Arguments

x

A named numeric matrix containing the observational data.

degree

An integer specifying the order of the SVAR process to be considered. Default is 0 for no time series.

targets

A character vector specifying the variables whose ancestors should be estimated. Default is all variables.

f

A function specifying the non-linearity used in the ancestor regression. Default is a cubic function.

Value

An object of class "AncReg" containing:

z.val

A numeric matrix of test statistics.

p.val

A numeric matrix of p-values.

References

Schultheiss C, Bühlmann P (2023). “Ancestor regression in linear structural equation models.” Biometrika, 110(4), 1117-1124. ISSN 1464-3510, doi:10.1093/biomet/asad008, https://academic.oup.com/biomet/article-pdf/110/4/1117/53472115/asad008.pdf.

Schultheiss C, Ulmer M, Bühlmann P (2025). “Ancestor regression in structural vector autoregressive models.” doi:10.1515/jci-2024-0011.

See Also

summary.AncReg, instant_graph, summary_graph, instant_p.val, summary_p.val

Examples

##### simulated example for inear structural equation models

# random DAGS for simulation
set.seed(1234)

p <- 5 #number of nodes
DAG <- pcalg::randomDAG(p, prob = 0.5)

B <- matrix(0, p, p) # represent DAG as matrix
for (i in 2:p){
  for(j in 1:(i-1)){
    # store edge weights
    B[i,j] <- max(0, DAG@edgeData@data[[paste(j,"|",i, sep="")]]$weight)
  }
}
colnames(B) <- rownames(B) <- LETTERS[1:p]

# solution in terms of noise
Bprime <- MASS::ginv(diag(p) - B)

n <- 5000
N <- matrix(rexp(n * p), ncol = p)
X <- t(Bprime %*% t(N))
colnames(X) <- LETTERS[1:p]

# fit ancestor regression
fit <- AncReg(X)
# collect ancestral p-values and graph
res <- summary(fit)
res

#compare true and estimated ancestral graph
trueGraph <- igraph::graph_from_adjacency_matrix(recAncestor(B != 0))
ancGraph <- igraph::graph_from_adjacency_matrix(res$graph)

oldpar <- par(mfrow = c(1, 2))
plot(trueGraph, main = 'true ancestral graph', vertex.size = 30)
plot(ancGraph, main = 'Ancestor Regression', vertex.size = 30)

##### SVAR-example with geyser timeseries
geyser <- MASS::geyser
# shift waiting such that it is waiting after erruption
geyser2 <- data.frame(waiting = geyser$waiting[-1], duration = geyser$duration[-nrow(geyser)])

# fit ancestor regression with 6 lags considered
fit2 <- AncReg(as.matrix(geyser2), degree = 6)
res2 <- summary(fit2)
res2

# visualize instantaneous ancestry
instGraph <- igraph::graph_from_adjacency_matrix(res2$inst.graph)
plot(instGraph, edge.label = round(diag(res2$inst.p.val[1:2, 2:1]), 2),
     main = 'instantaneous effects', vertex.size = 90)

# visualize summary of lagged ancestry
sumGraph <- igraph::graph_from_adjacency_matrix(res2$sum.graph)
plot(sumGraph, edge.label = round(diag(res2$sum.p.val[1:2, 2:1]), 2),
     main = 'summary graph', vertex.size = 90)
par(oldpar)

Instantaneous graph

Description

Construct instantaneous graph from p-values and significance level. Recursively constructs all ancestral connections by adding ancestors of ancestors.

Usage

instant_graph(lin.anc, alpha = 0.05, verbose = FALSE, corr = TRUE)

Arguments

lin.anc

output from AncReg()

alpha

significance level

verbose

should information be printed?

corr

should multiplicity correction be applied?

Value

A list containing:

rec.ancs

A boolean matrix indicating whether one variable affects another instantaneously

alpha

The significance level to avoid cycles

See Also

AncReg, instant_p.val

Examples

# random DAGS for simulation
set.seed(1234)

p <- 5 #number of nodes
DAG <- pcalg::randomDAG(p, prob = 0.5)

B <- matrix(0, p, p) # represent DAG as matrix
for (i in 2:p){
  for(j in 1:(i-1)){
    # store edge weights
    B[i,j] <- max(0, DAG@edgeData@data[[paste(j,"|",i, sep="")]]$weight)
  }
}
colnames(B) <- rownames(B) <- LETTERS[1:p]

# solution in terms of noise
Bprime <- MASS::ginv(diag(p) - B)

n <- 500
N <- matrix(rexp(n * p), ncol = p)
X <- t(Bprime %*% t(N))
colnames(X) <- LETTERS[1:p]

# fit ancestor regression
fit <- AncReg(X)

# generate instantaneous graph
instant_graph(fit, alpha = 0.01, verbose = TRUE)

P-values for instantaneous graph

Description

Collect p-values for instantaneous graph.

Usage

instant_p.val(lin.anc)

Arguments

lin.anc

output from AncReg()

Value

A numeric matrix of p-values for the instantaneous graph

See Also

AncReg

Examples

# random DAGS for simulation
set.seed(1234)

p <- 5 #number of nodes
DAG <- pcalg::randomDAG(p, prob = 0.5)

B <- matrix(0, p, p) # represent DAG as matrix
for (i in 2:p){
  for(j in 1:(i-1)){
    # store edge weights
    B[i,j] <- max(0, DAG@edgeData@data[[paste(j,"|",i, sep="")]]$weight)
  }
}
colnames(B) <- rownames(B) <- LETTERS[1:p]

# solution in terms of noise
Bprime <- MASS::ginv(diag(p) - B)

n <- 500
N <- matrix(rexp(n * p), ncol = p)
X <- t(Bprime %*% t(N))
colnames(X) <- LETTERS[1:p]

# fit ancestor regression
fit <- AncReg(X)

# collect instantaneous p-values
instant_p.val(fit)

Recursive Ancestor Detection

Description

This function recursively detects all ancestors of a given set of variables in a matrix. Adds ancestors of ancestors to the output matrix.

Usage

recAncestor(pmat)

Arguments

pmat

A boolean matrix indicating whether a connection was detected.

Value

A boolean matrix indicating whether a connection was detected or constructed.

See Also

AncReg, summary_graph

Examples

# random DAGS for simulation
set.seed(1234)

p <- 5 #number of nodes
DAG <- pcalg::randomDAG(p, prob = 0.5)

B <- matrix(0, p, p) # represent DAG as matrix
for (i in 2:p){
  for(j in 1:(i-1)){
    # store edge weights
    B[i,j] <- max(0, DAG@edgeData@data[[paste(j,"|",i, sep="")]]$weight)
  }
}
colnames(B) <- rownames(B) <- LETTERS[1:p]

# edge effects to adjecency matrix
B <- B != 0

# transform adjacency matrix to ancestral matrix
recAncestor(B)

Summary of AncReg

Description

Summarize the results of AncReg. For models with degree = 0 only the instantaneous graph is returned and for models with degree > 0 the summary graph is returned as well.

Usage

## S3 method for class 'AncReg'
summary(object, alpha = 0.05, verbose = FALSE, corr = TRUE, ...)

Arguments

object

output from AncReg()

alpha

significance level for determin whether a connection is significant

verbose

should information be printed?

corr

should multiplicity correction be applied?

...

Further arguments passed to or from other methods.

Value

A list containing: If degree = 0:

p.val

A numeric matrix of p-values for the instantaneous graph

graph

A boolean matrix indicating whether one variable affects another instantaneously

alpha

The significance level to avoid cycles

If degree > 0:

inst.p.val

A numeric matrix of p-values for the instantaneous graph

inst.graph

A boolean matrix indicating whether one variable affects another instantaneously

inst.alpha

The significance level to avoid cycles

sum.p.val

A numeric matrix of p-values for the summary graph

sum.graph

A boolean matrix indicating whether one variable affects another

See Also

AncReg, instant_graph, summary_graph, instant_p.val, summary_p.val

Examples

# random DAGS for simulation
set.seed(1234)

p <- 5 #number of nodes
DAG <- pcalg::randomDAG(p, prob = 0.5)

B <- matrix(0, p, p) # represent DAG as matrix
for (i in 2:p){
  for(j in 1:(i-1)){
    # store edge weights
    B[i,j] <- max(0, DAG@edgeData@data[[paste(j,"|",i, sep="")]]$weight)
  }
}
colnames(B) <- rownames(B) <- LETTERS[1:p]

# solution in terms of noise
Bprime <- MASS::ginv(diag(p) - B)

n <- 500
N <- matrix(rexp(n * p), ncol = p)
X <- t(Bprime %*% t(N))
colnames(X) <- LETTERS[1:p]

# fit ancestor regression
fit <- AncReg(X)
# collect ancestral p-values and graph
res <- summary(fit, alpha = 1)
res

Summary graph

Description

Construct summary graph from p-values and significance level. Recursively constructs all ancestral connections by adding ancestors of ancestors.

Usage

summary_graph(lin.anc, alpha = 0.05, corr = TRUE)

Arguments

lin.anc

output from AncReg()

alpha

significance level

corr

should multiplicity correction be applied?

Value

A boolean matrix indicating whether one variable affects another

See Also

AncReg, summary_p.val

Examples

# random DAGS for simulation
set.seed(1234)

p <- 5 #number of nodes
DAG <- pcalg::randomDAG(p, prob = 0.5)

B <- matrix(0, p, p) # represent DAG as matrix
for (i in 2:p){
  for(j in 1:(i-1)){
    # store edge weights
    B[i,j] <- max(0, DAG@edgeData@data[[paste(j,"|",i, sep="")]]$weight)
  }
}
colnames(B) <- rownames(B) <- LETTERS[1:p]

# solution in terms of noise
Bprime <- MASS::ginv(diag(p) - B)

n <- 500
N <- matrix(rexp(n * p), ncol = p)
X <- t(Bprime %*% t(N))
colnames(X) <- LETTERS[1:p]

# fit ancestor regression
fit <- AncReg(X)

# generate summary graph
summary_graph(fit, alpha = 0.1)

P-values for summary graph

Description

Collect p-values for summary graph.

Usage

summary_p.val(lin.anc)

Arguments

lin.anc

output from AncReg()

Value

A numeric matrix of p-values for the summary graph

See Also

AncReg

Examples

# random DAGS for simulation
set.seed(1234)

p <- 5 #number of nodes
DAG <- pcalg::randomDAG(p, prob = 0.5)

B <- matrix(0, p, p) # represent DAG as matrix
for (i in 2:p){
  for(j in 1:(i-1)){
    # store edge weights
    B[i,j] <- max(0, DAG@edgeData@data[[paste(j,"|",i, sep="")]]$weight)
  }
}
colnames(B) <- rownames(B) <- LETTERS[1:p]

# solution in terms of noise
Bprime <- MASS::ginv(diag(p) - B)

n <- 500
N <- matrix(rexp(n * p), ncol = p)
X <- t(Bprime %*% t(N))
colnames(X) <- LETTERS[1:p]

# fit ancestor regression
fit <- AncReg(X)

# collect summary p-values
summary_p.val(fit)