| Title: | Construct ANANSE GRN-Analysis Seurat | 
| Version: | 1.2.0 | 
| Description: | Enables gene regulatory network (GRN) analysis on single cell clusters, using the GRN analysis software 'ANANSE', Xu et al.(2021) <doi:10.1093/nar/gkab598>. Export data from 'Seurat' objects, for GRN analysis by 'ANANSE' implemented in 'snakemake'. Finally, incorporate results for visualization and interpretation. | 
| License: | Apache License (≥ 2) | 
| BugReports: | https://github.com/JGASmits/AnanseSeurat/issues | 
| URL: | https://github.com/JGASmits/AnanseSeurat/ | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.2.3 | 
| Imports: | dplyr, ggplot2, ggpubr, magrittr, patchwork, png, purrr, rlang, Seurat, stringr, utils, | 
| Suggests: | covr, knitr, rmarkdown, Signac, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| VignetteBuilder: | knitr | 
| Depends: | R (≥ 3.50) | 
| NeedsCompilation: | no | 
| Packaged: | 2023-11-11 20:53:08 UTC; jossm | 
| Author: | Jos Smits | 
| Maintainer: | Jos Smits <Jsmits@science.ru.nl> | 
| Repository: | CRAN | 
| Date/Publication: | 2023-11-11 21:43:17 UTC | 
Pipe operator
Description
See magrittr::%>% for details.
Usage
lhs %>% rhs
Arguments
| lhs | A value or the magrittr placeholder. | 
| rhs | A function call using the magrittr semantics. | 
Value
The result of calling rhs(lhs).
DEGS_scANANSE
Description
Calculate the differential genes needed for ananse influence
Usage
DEGS_scANANSE(
  seurat_object,
  output_dir,
  min_cells = 50,
  cluster_id = "seurat_clusters",
  genome = "./scANANSE/data/hg38",
  RNA_count_assay = "RNA",
  additional_contrasts = "None"
)
Arguments
| seurat_object | seurat object | 
| output_dir | directory where the files are outputted | 
| min_cells | minimum of cells a cluster needs to be exported | 
| cluster_id | ID used for finding clusters of cells | 
| genome | path to the genome folder used for the anansnake config file | 
| RNA_count_assay | assay containing the RNA data | 
| additional_contrasts | additional contrasts to add between clusters within cluster_ID | 
Value
None, outputs DEG files in the output directory
Examples
sce_small <- readRDS(system.file("extdata","sce_obj_tiny.Rds",package = 'AnanseSeurat'))
DEGS_scANANSE(sce_small, min_cells = 2, output_dir = tempdir())
Factor_Motif_Plot
Description
plot both expression of a TF, and the motif accessibility of the associated motif. Finally, fetch the motif logo from the Maelstrom directory.
Usage
Factor_Motif_Plot(
  seurat_object,
  TF_list,
  assay_RNA = "RNA",
  assay_maelstrom = "MotifTFanticor",
  logo_dir = "~/maelstrom/logos",
  col = c("darkred", "white", "darkgrey"),
  dim_reduction = "umap"
)
Arguments
| seurat_object | seurat object | 
| TF_list | list of TFs to plot the expression and linked motif Z-score for | 
| assay_RNA | RNA_count_assay assay containing the RNA data | 
| assay_maelstrom | maelstrom assay used for zscore vizualization, often either TFcor or TFanticor | 
| logo_dir | directory containing motif logos generated by gimme maelstrom | 
| col | colours used for zscore vizualization | 
| dim_reduction | dimensionality reduction method to use | 
Value
patchwork plot containing a expression dimreduction plot, a maelstrom motif score dimreduction plot, and a png image of the motif
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
logos_dir_path <- system.file("extdata","maelstrom","logos",package = 'AnanseSeurat')
sce_small <- Factor_Motif_Plot(sce_small,
  c('gene1', 'gene2'),
  dim_reduction = 'pca',
  logo_dir = logos_dir_path)
Maelstrom_Motif2TF
Description
create motif-factor links & export tables for printing motif score alongside its binding factor
Usage
Maelstrom_Motif2TF(
  seurat_object,
  mot_mat = NULL,
  m2f_df = NULL,
  cluster_id = "seurat_clusters",
  maelstrom_dir = "./maelstrom/",
  combine_motifs = "means",
  RNA_expression_assay = "RNA",
  RNA_expression_slot = "data",
  expr_tresh = 10,
  cor_tresh = 0.3,
  curated_motifs = FALSE,
  cor_method = "pearson",
  return_df = FALSE
)
Arguments
| seurat_object | object | 
| mot_mat | motif_matrix, if not provided extracts one from the single cell object from the maelstrom assay | 
| m2f_df | motif to factor dataframe, if not provided extracts from the maelstrom directory | 
| cluster_id | ID used for finding clusters of cells | 
| maelstrom_dir | directory where the GimmeMotifs m2f table is stored | 
| combine_motifs | means (take mean multiple motifscores), max_var (take motif with highest variance), or max_cor (take motif with best correlation to gene expression) | 
| RNA_expression_assay | Seurat assay containing factor expression info | 
| RNA_expression_slot | slot within assay used for calculating mean factor expression per cluster | 
| expr_tresh | minimum sum of gene counts over all cells in RNA_expression_assay to filter genes by | 
| cor_tresh | minimum value of to filter the cor() output by | 
| curated_motifs | use only curated motifs (T), or all motifs in the database (F) | 
| cor_method | specify one of the cor() methods | 
| return_df | return both the seurat object and two dataframes with maelstrom scores and expression values as a list | 
Value
seurat object with two assays added, MotifTFcor for TFs with positive correlation to the linked motif, and MotifTFanticor for TFs with positive correlation to the linked motif
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
maelstrom_dir_path <- system.file("extdata","maelstrom",package = 'AnanseSeurat')
sce_small <- Maelstrom_Motif2TF(sce_small, maelstrom_dir = maelstrom_dir_path)
config_scANANSE
Description
This functions generates a sample file and config file for running Anansnake based on the seurat object
Usage
config_scANANSE(
  seurat_object,
  output_dir,
  min_cells = 50,
  cluster_id = "seurat_clusters",
  genome = "./scANANSE/data/hg38",
  additional_contrasts = c()
)
Arguments
| seurat_object | seurat object | 
| output_dir | directory where the files are outputted | 
| min_cells | minimum of cells a cluster needs to be exported | 
| cluster_id | ID used for finding clusters of cells | 
| genome | genomepy name or location of the genome fastq file | 
| additional_contrasts | additional contrasts to add between clusters within cluster_ID | 
Value
None, outputs snakemake config file in the output directory
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
config_scANANSE(sce_small, min_cells = 2, output_dir = tempdir())
export_seurat_Maelstrom
Description
normalize and export the peak table of a seurat object based on clusters
Usage
export_ATAC_maelstrom(
  seurat_object,
  output_dir,
  min_cells = 50,
  ATAC_peak_assay = "peaks",
  cluster_id = "seurat_clusters",
  select_top_rows = TRUE,
  n_top_rows = 1e+05
)
Arguments
| seurat_object | object | 
| output_dir | directory where the files are outputted | 
| min_cells | minimum of cells a cluster needs to be exported | 
| ATAC_peak_assay | assay of the seurat object containing the peaks and peakcounts | 
| cluster_id | ID used for finding clusters of cells | 
| select_top_rows | only output the top variable rows, or all rows if false | 
| n_top_rows | amount of variable rows to export | 
Value
None, outputs maelstrom peak counts table in the output directory
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
config_scANANSE(sce_small, min_cells = 2, output_dir = tempdir())
export_ATAC_scANANSE
Description
This functions exports ATAC values from a seurat object
Usage
export_ATAC_scANANSE(
  seurat_object,
  output_dir,
  min_cells = 50,
  ATAC_peak_assay = "peaks",
  cluster_id = "seurat_clusters"
)
Arguments
| seurat_object | object | 
| output_dir | directory where the files are outputted | 
| min_cells | minimum of cells a cluster needs to be exported | 
| ATAC_peak_assay | assay of the seurat object containing the peaks and peakcounts | 
| cluster_id | ID used for finding clusters of cells | 
Value
None, outputs ATAC peak count file in the output directory
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
export_ATAC_scANANSE(sce_small, min_cells = 2, output_dir = tempdir())
export_CPM_scANANSE
Description
This functions exports CPM values from a seurat object
Usage
export_CPM_scANANSE(
  seurat_object,
  output_dir,
  min_cells = 50,
  RNA_count_assay = "RNA",
  cluster_id = "seurat_clusters"
)
Arguments
| seurat_object | the seurat object used to export the CPM values from | 
| output_dir | directory where the files are outputted | 
| min_cells | minimum of cells a cluster needs to be exported | 
| RNA_count_assay | assay of the seurat object containing the RNA count data | 
| cluster_id | ID used for finding clusters of cells | 
Value
None, outputs CPM and counts files in the output directory
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
export_CPM_scANANSE(sce_small, min_cells = 2, output_dir = tempdir())
import_seurat_Maelstrom
Description
load Maelstrom enriched motifs
Usage
import_seurat_maelstrom(
  seurat_object,
  cluster_id = "seurat_clusters",
  maelstrom_file = "~/final.out.txt",
  return_df = FALSE
)
Arguments
| seurat_object | object | 
| cluster_id | ID used for finding clusters of cells | 
| maelstrom_file | maelstrom final.out.txt file | 
| return_df | return both the seurat object and a dataframe with maelstrom scores as a list | 
Value
seurat object with the maelstrom motif scores addes as an assay
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
maelstromfile_path <- system.file("extdata","maelstrom","final.out.txt",package = 'AnanseSeurat')
sce_small <- import_seurat_maelstrom(sce_small, maelstrom_file = maelstromfile_path)
import_seurat_scANANSE
Description
import the influences from a anansnake directory into a seurat object
Usage
import_seurat_scANANSE(
  seurat_object,
  cluster_id = "seurat_clusters",
  anansnake_inf_dir = "None",
  return_df = FALSE
)
Arguments
| seurat_object | seurat object | 
| cluster_id | ID used for finding clusters of cells | 
| anansnake_inf_dir | influence directory generated by anansnake | 
| return_df | return both the seurat object and a dataframe with influence scores as a list | 
Value
seurat object with the influence scores addes as an assay
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
infdir <- system.file("extdata","influence",package = 'AnanseSeurat')
sce_small <- import_seurat_scANANSE(sce_small, anansnake_inf_dir = infdir)
per_cluster_df
Description
generate a table of the assay score averages per cluster identifier cell
Usage
per_cluster_df(
  seurat_object,
  assay = "influence",
  cluster_id = "seurat_clusters"
)
Arguments
| seurat_object | seurat object | 
| assay | assay containing influence or motif scores generated from cluster pseudobulk | 
| cluster_id | ID used for finding clusters of cells | 
Value
dataframe with assay scores, concatinating cells from each per cluster
Examples
sce_small <- readRDS(system.file("extdata","sce_small.Rds",package = 'AnanseSeurat'))
df <- per_cluster_df(sce_small)