CRAN Package Check Results for Package echelon

Last updated on 2025-11-25 11:51:46 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.4.0 12.21 37.98 50.19 ERROR
r-devel-linux-x86_64-debian-gcc 0.4.0 9.49 28.74 38.23 ERROR
r-devel-linux-x86_64-fedora-clang 0.4.0 51.00 42.38 93.38 ERROR
r-devel-linux-x86_64-fedora-gcc 0.4.0 31.00 52.01 83.01 ERROR
r-devel-windows-x86_64 0.4.0 22.00 74.00 96.00 OK
r-patched-linux-x86_64 0.4.0 13.53 47.20 60.73 OK
r-release-linux-x86_64 0.4.0 13.56 47.62 61.18 OK
r-release-macos-arm64 0.4.0 OK
r-release-macos-x86_64 0.4.0 17.00 82.00 99.00 OK
r-release-windows-x86_64 0.4.0 16.00 85.00 101.00 OK
r-oldrel-macos-arm64 0.4.0 OK
r-oldrel-macos-x86_64 0.4.0 16.00 64.00 80.00 OK
r-oldrel-windows-x86_64 0.4.0 19.00 93.00 112.00 OK

Check Details

Version: 0.4.0
Check: examples
Result: ERROR Running examples in ‘echelon-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: echebin > ### Title: Echelon spatial scan statistic based on Binomial model > ### Aliases: echebin > ### Keywords: echelon analysis spatial scan statistic spatial cluster > ### deteciotn > > ### ** Examples > > ##Hotspot detection for non-white birth in North Carolina using echelon scan > > #Load required packages and data > library(spData) To access larger datasets in this package, install the spDataLarge package with: `install.packages('spDataLarge', repos='https://nowosad.github.io/drat/', type='source')` > data("nc.sids") > > #Non-white birth from 1974 to 1984 (case data) > nwb <- nc.sids$NWBIR74 + nc.sids$NWBIR79 > > #White birth from 1974 to 1984 (control data) > wb <- (nc.sids$BIR74 - nc.sids$NWBIR74) + (nc.sids$BIR79 - nc.sids$NWBIR79) > > ##Hotspot detection based on Binomial model > #Echelon analysis > SIDS.echelon <- echelon(x = nwb/wb, nb = ncCR85.nb, name = row.names(nc.sids)) 19 echelons are created See the objects 'Table' and 'Echelons' for more details > > #Basic cluster detection (significance not evaluated) > SIDS.clusters <- echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20, + n.sim = 0, cluster.info = TRUE, main = "Hgih rate clusters", ens = FALSE) dev.new(): using pdf(file="Rplots1.pdf") ------------- CLUSTERS DETECTED ------------- Number of locations ......: 100 region Limit length of cluster ..: 20 regions Total cases ..............: 240380 Total population .........: 752354 Scan for Area with .......: High Rates Number of Replications ...: 0 Model ....................: Binomial --------------------------------------------- MOST LIKELY CLUSTER -- 20 regions Cluster regions included : Halifax, Gates, Edgecombe, Martin, Washington, Vance, Chowan, Granville, Franklin, Greene, Lenoir, Northampton, Bertie, Hertford, Warren, Wilson, Jones, Pitt, Durham, Perquimans Population ..............: 98424 Number of cases .........: 54019 Expected cases ..........: 31446.847 Observed / expected .....: 1.7178 Relative risk ...........: 1.9258 Log likelihood ratio ....: 12804.6298 ---------------------------------------------- SECONDARY CLUSTERS 2 -- 3 regions Cluster regions included : Robeson, Hoke, Scotland Population ..............: 25048 Number of cases .........: 17604 Expected cases ..........: 8002.9324 Observed / expected .....: 2.1997 Relative risk ...........: 2.2945 Log likelihood ratio ....: 8004.2121 3 -- 1 regions Cluster regions included : Anson Population ..............: 3445 Number of cases .........: 2113 Expected cases ..........: 1100.6908 Observed / expected .....: 1.9197 Relative risk ...........: 1.9279 Log likelihood ratio ....: 628.1941 4 -- 1 regions Cluster regions included : Mecklenburg Population ..............: 52345 Number of cases .........: 19658 Expected cases ..........: 16724.4291 Observed / expected .....: 1.1754 Relative risk ...........: 1.191 Log likelihood ratio ....: 396.0322 5 -- 1 regions Cluster regions included : Caswell Population ..............: 2288 Number of cases .........: 1147 Expected cases ..........: 731.0248 Observed / expected .....: 1.569 Relative risk ...........: 1.5718 Log likelihood ratio ....: 162.5374 ---------------------------------------------- Display only the top 5 clusters. See object 'clusters' for more details > text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name, + adj = -0.1, cex = 0.7) > > #Detected clusters and neighbors map > #XY coordinates of each polygon centroid point > NC.coo <- cbind(nc.sids$lon, nc.sids$lat) > echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20, + n.sim = 0, coo = NC.coo, dendrogram = FALSE) dev.new(): using pdf(file="Rplots2.pdf") MOST LIKELY CLUSTER -- 20 regions Cluster regions included : Halifax, Gates, Edgecombe, Martin, Washington, Vance, Chowan, Granville, Franklin, Greene, Lenoir, Northampton, Bertie, Hertford, Warren, Wilson, Jones, Pitt, Durham, Perquimans Population ..............: 98424 Number of cases .........: 54019 Expected cases ..........: 31446.847 Observed / expected .....: 1.7178 Relative risk ...........: 1.9258 Log likelihood ratio ....: 12804.6298 > > #Load geospatial information for North Carolina > nc <- sf::st_read(system.file("shape/nc.shp", package = "sf")) Reading layer `nc' from data source `/home/hornik/tmp/R.check/r-devel-clang/Work/build/Packages/sf/shape/nc.shp' using driver `ESRI Shapefile' Simple feature collection with 100 features and 14 fields Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965 Geodetic CRS: NAD27 > > #Extract detected clusters > MLC <- SIDS.clusters$clusters[[1]] > Secondary <- SIDS.clusters$clusters[[2]] > > #Assign colors to clusters for plotting > cluster.col <- rep(0, length(nwb)) > cluster.col[MLC$regionsID] <- 2 > cluster.col[Secondary$regionsID] <- 3 > > #Plot detected high-rate clusters on a simple map > plot(nc$geom, col = cluster.col, + main = "Detected high rate clusters") > legend("bottomleft", + legend = c( + paste("1- p-value:", MLC$p), + paste("2- p-value:", Secondary$p) + ), + text.col = c(2, 3) + ) > > #Interactive map visualization with mapview > library(mapview) Error in library(mapview) : there is no package called ‘mapview’ Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.4.0
Check: examples
Result: ERROR Running examples in ‘echelon-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: echebin > ### Title: Echelon spatial scan statistic based on Binomial model > ### Aliases: echebin > ### Keywords: echelon analysis spatial scan statistic spatial cluster > ### deteciotn > > ### ** Examples > > ##Hotspot detection for non-white birth in North Carolina using echelon scan > > #Load required packages and data > library(spData) To access larger datasets in this package, install the spDataLarge package with: `install.packages('spDataLarge', repos='https://nowosad.github.io/drat/', type='source')` > data("nc.sids") > > #Non-white birth from 1974 to 1984 (case data) > nwb <- nc.sids$NWBIR74 + nc.sids$NWBIR79 > > #White birth from 1974 to 1984 (control data) > wb <- (nc.sids$BIR74 - nc.sids$NWBIR74) + (nc.sids$BIR79 - nc.sids$NWBIR79) > > ##Hotspot detection based on Binomial model > #Echelon analysis > SIDS.echelon <- echelon(x = nwb/wb, nb = ncCR85.nb, name = row.names(nc.sids)) 19 echelons are created See the objects 'Table' and 'Echelons' for more details > > #Basic cluster detection (significance not evaluated) > SIDS.clusters <- echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20, + n.sim = 0, cluster.info = TRUE, main = "Hgih rate clusters", ens = FALSE) dev.new(): using pdf(file="Rplots1.pdf") ------------- CLUSTERS DETECTED ------------- Number of locations ......: 100 region Limit length of cluster ..: 20 regions Total cases ..............: 240380 Total population .........: 752354 Scan for Area with .......: High Rates Number of Replications ...: 0 Model ....................: Binomial --------------------------------------------- MOST LIKELY CLUSTER -- 20 regions Cluster regions included : Halifax, Gates, Edgecombe, Martin, Washington, Vance, Chowan, Granville, Franklin, Greene, Lenoir, Northampton, Bertie, Hertford, Warren, Wilson, Jones, Pitt, Durham, Perquimans Population ..............: 98424 Number of cases .........: 54019 Expected cases ..........: 31446.847 Observed / expected .....: 1.7178 Relative risk ...........: 1.9258 Log likelihood ratio ....: 12804.6298 ---------------------------------------------- SECONDARY CLUSTERS 2 -- 3 regions Cluster regions included : Robeson, Hoke, Scotland Population ..............: 25048 Number of cases .........: 17604 Expected cases ..........: 8002.9324 Observed / expected .....: 2.1997 Relative risk ...........: 2.2945 Log likelihood ratio ....: 8004.2121 3 -- 1 regions Cluster regions included : Anson Population ..............: 3445 Number of cases .........: 2113 Expected cases ..........: 1100.6908 Observed / expected .....: 1.9197 Relative risk ...........: 1.9279 Log likelihood ratio ....: 628.1941 4 -- 1 regions Cluster regions included : Mecklenburg Population ..............: 52345 Number of cases .........: 19658 Expected cases ..........: 16724.4291 Observed / expected .....: 1.1754 Relative risk ...........: 1.191 Log likelihood ratio ....: 396.0322 5 -- 1 regions Cluster regions included : Caswell Population ..............: 2288 Number of cases .........: 1147 Expected cases ..........: 731.0248 Observed / expected .....: 1.569 Relative risk ...........: 1.5718 Log likelihood ratio ....: 162.5374 ---------------------------------------------- Display only the top 5 clusters. See object 'clusters' for more details > text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name, + adj = -0.1, cex = 0.7) > > #Detected clusters and neighbors map > #XY coordinates of each polygon centroid point > NC.coo <- cbind(nc.sids$lon, nc.sids$lat) > echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20, + n.sim = 0, coo = NC.coo, dendrogram = FALSE) dev.new(): using pdf(file="Rplots2.pdf") MOST LIKELY CLUSTER -- 20 regions Cluster regions included : Halifax, Gates, Edgecombe, Martin, Washington, Vance, Chowan, Granville, Franklin, Greene, Lenoir, Northampton, Bertie, Hertford, Warren, Wilson, Jones, Pitt, Durham, Perquimans Population ..............: 98424 Number of cases .........: 54019 Expected cases ..........: 31446.847 Observed / expected .....: 1.7178 Relative risk ...........: 1.9258 Log likelihood ratio ....: 12804.6298 > > #Load geospatial information for North Carolina > nc <- sf::st_read(system.file("shape/nc.shp", package = "sf")) Reading layer `nc' from data source `/home/hornik/tmp/R.check/r-devel-gcc/Work/build/Packages/sf/shape/nc.shp' using driver `ESRI Shapefile' Simple feature collection with 100 features and 14 fields Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965 Geodetic CRS: NAD27 > > #Extract detected clusters > MLC <- SIDS.clusters$clusters[[1]] > Secondary <- SIDS.clusters$clusters[[2]] > > #Assign colors to clusters for plotting > cluster.col <- rep(0, length(nwb)) > cluster.col[MLC$regionsID] <- 2 > cluster.col[Secondary$regionsID] <- 3 > > #Plot detected high-rate clusters on a simple map > plot(nc$geom, col = cluster.col, + main = "Detected high rate clusters") > legend("bottomleft", + legend = c( + paste("1- p-value:", MLC$p), + paste("2- p-value:", Secondary$p) + ), + text.col = c(2, 3) + ) > > #Interactive map visualization with mapview > library(mapview) Error in library(mapview) : there is no package called ‘mapview’ Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.4.0
Check: examples
Result: ERROR Running examples in ‘echelon-Ex.R’ failed The error most likely occurred in: > ### Name: echebin > ### Title: Echelon spatial scan statistic based on Binomial model > ### Aliases: echebin > ### Keywords: echelon analysis spatial scan statistic spatial cluster > ### deteciotn > > ### ** Examples > > ##Hotspot detection for non-white birth in North Carolina using echelon scan > > #Load required packages and data > library(spData) To access larger datasets in this package, install the spDataLarge package with: `install.packages('spDataLarge', repos='https://nowosad.github.io/drat/', type='source')` > data("nc.sids") > > #Non-white birth from 1974 to 1984 (case data) > nwb <- nc.sids$NWBIR74 + nc.sids$NWBIR79 > > #White birth from 1974 to 1984 (control data) > wb <- (nc.sids$BIR74 - nc.sids$NWBIR74) + (nc.sids$BIR79 - nc.sids$NWBIR79) > > ##Hotspot detection based on Binomial model > #Echelon analysis > SIDS.echelon <- echelon(x = nwb/wb, nb = ncCR85.nb, name = row.names(nc.sids)) 19 echelons are created See the objects 'Table' and 'Echelons' for more details > > #Basic cluster detection (significance not evaluated) > SIDS.clusters <- echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20, + n.sim = 0, cluster.info = TRUE, main = "Hgih rate clusters", ens = FALSE) dev.new(): using pdf(file="Rplots1.pdf") ------------- CLUSTERS DETECTED ------------- Number of locations ......: 100 region Limit length of cluster ..: 20 regions Total cases ..............: 240380 Total population .........: 752354 Scan for Area with .......: High Rates Number of Replications ...: 0 Model ....................: Binomial --------------------------------------------- MOST LIKELY CLUSTER -- 20 regions Cluster regions included : Halifax, Gates, Edgecombe, Martin, Washington, Vance, Chowan, Granville, Franklin, Greene, Lenoir, Northampton, Bertie, Hertford, Warren, Wilson, Jones, Pitt, Durham, Perquimans Population ..............: 98424 Number of cases .........: 54019 Expected cases ..........: 31446.847 Observed / expected .....: 1.7178 Relative risk ...........: 1.9258 Log likelihood ratio ....: 12804.6298 ---------------------------------------------- SECONDARY CLUSTERS 2 -- 3 regions Cluster regions included : Robeson, Hoke, Scotland Population ..............: 25048 Number of cases .........: 17604 Expected cases ..........: 8002.9324 Observed / expected .....: 2.1997 Relative risk ...........: 2.2945 Log likelihood ratio ....: 8004.2121 3 -- 1 regions Cluster regions included : Anson Population ..............: 3445 Number of cases .........: 2113 Expected cases ..........: 1100.6908 Observed / expected .....: 1.9197 Relative risk ...........: 1.9279 Log likelihood ratio ....: 628.1941 4 -- 1 regions Cluster regions included : Mecklenburg Population ..............: 52345 Number of cases .........: 19658 Expected cases ..........: 16724.4291 Observed / expected .....: 1.1754 Relative risk ...........: 1.191 Log likelihood ratio ....: 396.0322 5 -- 1 regions Cluster regions included : Caswell Population ..............: 2288 Number of cases .........: 1147 Expected cases ..........: 731.0248 Observed / expected .....: 1.569 Relative risk ...........: 1.5718 Log likelihood ratio ....: 162.5374 ---------------------------------------------- Display only the top 5 clusters. See object 'clusters' for more details > text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name, + adj = -0.1, cex = 0.7) > > #Detected clusters and neighbors map > #XY coordinates of each polygon centroid point > NC.coo <- cbind(nc.sids$lon, nc.sids$lat) > echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20, + n.sim = 0, coo = NC.coo, dendrogram = FALSE) dev.new(): using pdf(file="Rplots2.pdf") MOST LIKELY CLUSTER -- 20 regions Cluster regions included : Halifax, Gates, Edgecombe, Martin, Washington, Vance, Chowan, Granville, Franklin, Greene, Lenoir, Northampton, Bertie, Hertford, Warren, Wilson, Jones, Pitt, Durham, Perquimans Population ..............: 98424 Number of cases .........: 54019 Expected cases ..........: 31446.847 Observed / expected .....: 1.7178 Relative risk ...........: 1.9258 Log likelihood ratio ....: 12804.6298 > > #Load geospatial information for North Carolina > nc <- sf::st_read(system.file("shape/nc.shp", package = "sf")) Reading layer `nc' from data source `/data/gannet/ripley/R/test-clang/sf/shape/nc.shp' using driver `ESRI Shapefile' Simple feature collection with 100 features and 14 fields Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965 Geodetic CRS: NAD27 > > #Extract detected clusters > MLC <- SIDS.clusters$clusters[[1]] > Secondary <- SIDS.clusters$clusters[[2]] > > #Assign colors to clusters for plotting > cluster.col <- rep(0, length(nwb)) > cluster.col[MLC$regionsID] <- 2 > cluster.col[Secondary$regionsID] <- 3 > > #Plot detected high-rate clusters on a simple map > plot(nc$geom, col = cluster.col, + main = "Detected high rate clusters") > legend("bottomleft", + legend = c( + paste("1- p-value:", MLC$p), + paste("2- p-value:", Secondary$p) + ), + text.col = c(2, 3) + ) > > #Interactive map visualization with mapview > library(mapview) Error in library(mapview) : there is no package called ‘mapview’ Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.4.0
Check: examples
Result: ERROR Running examples in ‘echelon-Ex.R’ failed The error most likely occurred in: > ### Name: echebin > ### Title: Echelon spatial scan statistic based on Binomial model > ### Aliases: echebin > ### Keywords: echelon analysis spatial scan statistic spatial cluster > ### deteciotn > > ### ** Examples > > ##Hotspot detection for non-white birth in North Carolina using echelon scan > > #Load required packages and data > library(spData) To access larger datasets in this package, install the spDataLarge package with: `install.packages('spDataLarge', repos='https://nowosad.github.io/drat/', type='source')` > data("nc.sids") > > #Non-white birth from 1974 to 1984 (case data) > nwb <- nc.sids$NWBIR74 + nc.sids$NWBIR79 > > #White birth from 1974 to 1984 (control data) > wb <- (nc.sids$BIR74 - nc.sids$NWBIR74) + (nc.sids$BIR79 - nc.sids$NWBIR79) > > ##Hotspot detection based on Binomial model > #Echelon analysis > SIDS.echelon <- echelon(x = nwb/wb, nb = ncCR85.nb, name = row.names(nc.sids)) 19 echelons are created See the objects 'Table' and 'Echelons' for more details > > #Basic cluster detection (significance not evaluated) > SIDS.clusters <- echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20, + n.sim = 0, cluster.info = TRUE, main = "Hgih rate clusters", ens = FALSE) dev.new(): using pdf(file="Rplots1.pdf") ------------- CLUSTERS DETECTED ------------- Number of locations ......: 100 region Limit length of cluster ..: 20 regions Total cases ..............: 240380 Total population .........: 752354 Scan for Area with .......: High Rates Number of Replications ...: 0 Model ....................: Binomial --------------------------------------------- MOST LIKELY CLUSTER -- 20 regions Cluster regions included : Halifax, Gates, Edgecombe, Martin, Washington, Vance, Chowan, Granville, Franklin, Greene, Lenoir, Northampton, Bertie, Hertford, Warren, Wilson, Jones, Pitt, Durham, Perquimans Population ..............: 98424 Number of cases .........: 54019 Expected cases ..........: 31446.847 Observed / expected .....: 1.7178 Relative risk ...........: 1.9258 Log likelihood ratio ....: 12804.6298 ---------------------------------------------- SECONDARY CLUSTERS 2 -- 3 regions Cluster regions included : Robeson, Hoke, Scotland Population ..............: 25048 Number of cases .........: 17604 Expected cases ..........: 8002.9324 Observed / expected .....: 2.1997 Relative risk ...........: 2.2945 Log likelihood ratio ....: 8004.2121 3 -- 1 regions Cluster regions included : Anson Population ..............: 3445 Number of cases .........: 2113 Expected cases ..........: 1100.6908 Observed / expected .....: 1.9197 Relative risk ...........: 1.9279 Log likelihood ratio ....: 628.1941 4 -- 1 regions Cluster regions included : Mecklenburg Population ..............: 52345 Number of cases .........: 19658 Expected cases ..........: 16724.4291 Observed / expected .....: 1.1754 Relative risk ...........: 1.191 Log likelihood ratio ....: 396.0322 5 -- 1 regions Cluster regions included : Caswell Population ..............: 2288 Number of cases .........: 1147 Expected cases ..........: 731.0248 Observed / expected .....: 1.569 Relative risk ...........: 1.5718 Log likelihood ratio ....: 162.5374 ---------------------------------------------- Display only the top 5 clusters. See object 'clusters' for more details > text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name, + adj = -0.1, cex = 0.7) > > #Detected clusters and neighbors map > #XY coordinates of each polygon centroid point > NC.coo <- cbind(nc.sids$lon, nc.sids$lat) > echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20, + n.sim = 0, coo = NC.coo, dendrogram = FALSE) dev.new(): using pdf(file="Rplots2.pdf") MOST LIKELY CLUSTER -- 20 regions Cluster regions included : Halifax, Gates, Edgecombe, Martin, Washington, Vance, Chowan, Granville, Franklin, Greene, Lenoir, Northampton, Bertie, Hertford, Warren, Wilson, Jones, Pitt, Durham, Perquimans Population ..............: 98424 Number of cases .........: 54019 Expected cases ..........: 31446.847 Observed / expected .....: 1.7178 Relative risk ...........: 1.9258 Log likelihood ratio ....: 12804.6298 > > #Load geospatial information for North Carolina > nc <- sf::st_read(system.file("shape/nc.shp", package = "sf")) Reading layer `nc' from data source `/data/gannet/ripley/R/test-dev/sf/shape/nc.shp' using driver `ESRI Shapefile' Simple feature collection with 100 features and 14 fields Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965 Geodetic CRS: NAD27 > > #Extract detected clusters > MLC <- SIDS.clusters$clusters[[1]] > Secondary <- SIDS.clusters$clusters[[2]] > > #Assign colors to clusters for plotting > cluster.col <- rep(0, length(nwb)) > cluster.col[MLC$regionsID] <- 2 > cluster.col[Secondary$regionsID] <- 3 > > #Plot detected high-rate clusters on a simple map > plot(nc$geom, col = cluster.col, + main = "Detected high rate clusters") > legend("bottomleft", + legend = c( + paste("1- p-value:", MLC$p), + paste("2- p-value:", Secondary$p) + ), + text.col = c(2, 3) + ) > > #Interactive map visualization with mapview > library(mapview) Error in library(mapview) : there is no package called ‘mapview’ Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc