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Abstract

This paper aims at explanation of the R-package HAC, which provides user friendly
methods for dealing with hierarchical Archimedean copulae (HAC). Computationally ef-
ficient estimation procedures allow to recover the structure and the parameters of HAC
from data. In addition, arbitrary HAC can be constructed to sample random vectors and
to compute the values of the corresponding cumulative distribution plus density functions.
Accurate graphics of the HAC structure can be produced by the generic plot function.
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1. Introduction

The use of copulae in applied statistics began in the end of the 90th, when Embrechts,
McNeil, and Straumann (1999) introduced copula to empirical finance in the context of risk
management. Nowadays, quantitative orientated sciences like biostatistics and hydrology
use copulae to attempt measuring the dependence of random variables, e.g., Lakhal-Chaieb
(2010); Acar, Craiu, and Yao (2011); Bárdossy (2006); Genest and Favre (2007); Bárdossy
and Li (2008). In finance, copulae became a standard tool, explicitly on VaR measurement
and in valuation of structured credit portfolios, see Mendes and Souza (2004); Junker and
May (2005) and Li (2000). This paper aims at providing the necessary tools for academics
and practitioners for simple and effective use of hierarchical Archimedean copulae (HAC) in
their statistical analysis.

Copula is the function splitting a multivariate distribution into its margins and a pure de-
pendency component. Formally, copulae are introduced in Sklar (1959) stating that if F
is an arbitrary d-dimensional continuous distribution function of the random vector X =
(X1, . . . , Xd)

>, then the associated copula is unique and defined as the continuous mapping
C : [0, 1]d → [0, 1] which satisfies the equality

C(u1, . . . , ud) = F{F−11 (u1), . . . , F
−1
d (ud)}, u1, . . . , ud ∈ [0, 1],

where F−11 (·), . . . , F−1d (·) are the quantile functions of the corresponding continuous marginal
distribution functions F1(x1), . . . , Fd(xd). Accordingly, a d-dimensional density f(·) can be
split in the copula density c(·) and the product of the marginal densities. For an overview and
recent developments of copulae we refer to Nelsen (2006), Cherubini, Luciano, and Vecchiato
(2004), Joe (1997) and Jaworski, Durante, and Härdle (2013). If F (·) belongs to the class
of elliptical distributions, then C(·) is an elliptical copula, which in most cases cannot be
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given explicitly because the distribution function F (·) and the inverse marginal distributions
Fj(·) usually have integral representations. One of the classes that overcomes this drawback
of elliptical copulae is the class of Archimedean copulae, which, however, is very restrictive
yet for moderate dimensions. Among other R packages (R Core Team (2013)) dealing with
Archimedean copula, we would like to mention the copula and the fCopulae package, c.f.
Yan (2007); Kojadinovic and Yan (2010); Hofert and Mächler (2011); Hofert, Kojadinovic,
Mächler, and Yan (2013) and Wuertz, many others, and see the SOURCE file (2013).

HAC generalize the concept of simple Archimedean copulae by substituting (a) marginal
distribution(s) by a further HAC. This class is thoroughly analyzed in Embrechts, Lindskog,
and McNeil (2003); Whelan (2004); Savu and Trede (2010); Hofert (2011); Okhrin, Okhrin,
and Schmid (2013b). The first sampling algorithms for special HAC structures were provided
by the QRMlib package of McNeil and Ulman (2011), which is not updated anymore, but
several functions were ported to the QRM package, see Pfaff and McNeil (2013). Hofert and
Mächler (2012) presented the comprehensive nacopula package which, among other features,
allows sampling from arbitrary HAC and was integrated into the package copula from version
0.8-1. The central contribution of the HAC package is the estimation of the parameter and
the structure for this class of copulae, as discussed in Okhrin, Okhrin, and Schmid (2013a),
including a simple and intuitive representation of HAC as R-objects of the class hac. The main
estimation procedure relies on a recursive multi-stage Maximum Likelihood (ML) procedure,
which determines the parameter and the structure simultaneously. This elegant procedure
endows the estimator with the usual asymptotic properties but avoids the computationally
intensive one-step ML estimation, which is also implemented for a predetermined structure.
Besides, the package offers functions for producing graphics of the copula’s structure, for
sampling random vectors from a given copula and for computing values of the corresponding
distribution and density.

The paper is organized as follows. Section 2 describes shortly the theoretical aspects of HAC
and its estimation. Section 3 presents the functions of the HAC package and Section 4 a
simulation study. Section 5 concludes.

2. Hierarchical Archimedean copulae

As mentioned above, the large class of copulae, which can describe tail dependency, non-
ellipticity, and, most importantly, has close form representation

C(u1, . . . , ud; θ) = φθ
{
φ−1θ (u1) + · · ·+ φ−1θ (ud)

}
, u1, . . . , ud ∈ [0, 1], (1)

where φθ(·) ∈ L = {φθ : [0;∞) → [0, 1] |φθ(0) = 1, φθ(∞) = 0; (−1)jφ
(j)
θ ≥ 0; j ∈ N} and

(−1)jφ
(j)
θ (x) being non-decreasing and convex on [0,∞), for x > 0, is the class of Archimedean

copulae. The function φ(·) is called the generator of the copula and commonly depends on a
single parameter θ. For example, the Gumbel generator is given by φθ(x) = exp(−x1/θ) for
0 ≤ x < ∞, 1 ≤ θ < ∞. Detailed reviews of the properties of Archimedean copulae can be
found in McNeil and Nešlehová (2009) and in Joe (1996).

A disadvantage of Archimedean copulae is the fact that the multivariate dependency structure
is very restricted, since it typically depends on a single parameter of the generator function
φ(·). Moreover, the rendered dependency is symmetric with respect to the permutation of
variables, i.e., the distribution is exchangeable. HAC (also called nested Archimedean copulae)
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overcome this problem by considering the compositions of simple Archimedean copulae. For
example, the special case of four-dimensional fully nested HAC can be given by

C(u1, u2, u3, u4) = C3{C2(u1, u2, u3), u4} (2)

= φ3{φ−13 ◦ C2(u1, u2, u3) + φ−13 (u4)},

where Cj(u1, . . . , uj+1) = φj [φ
−1
j {Cj−1(u1, . . . , uj)}+ φ−1j (uj+1)], j = 2, . . . , d− 1, and C1 =

φ1{φ−11 (u1) + φ−11 (u2)}. The functional form of Cj(·) indicates that the composition can be
applied recursively. A different segmentation of the variables leads naturally to more complex
HAC. In the following, let d-dimensional HAC be denoted by C(u1, . . . , ud; s,θθθ), where θθθ
denotes the vector of feasible dependency parameters and s = (. . . (igik)i` . . .) the structure
of the entire HAC, where im ∈ {1, . . . , d} is a reordering of the indices of the variables with
m = 1 . . . , d, and g, k, ` ∈ {1, . . . , d : g 6= k 6= `}. Structures of subcopulae are denoted
by sj with s = sd−1. For instance, the structure according to Equation 2 is s = (s2)4 with
sj = (sj−1(j+1)), j = 2, 3, for the sucopulae and s1 = (12). A clear definition of the structure
is essential, as s is in fact a parameter to estimate. Thus, Equation 2 can be rewritten as

C(u1, u2, u3, u4; s = (((12)3)4), θθθ) = C{u1, u2, u3, u4; (s24), (θ1, θ2, θ3)
>}

= φθ3(φ−1θ3 ◦ C2{u1, u2, u3; (s1(3)), (θ1, θ2)
>}+ φ−1θ3 (u4)).

Figure 1 presents the four-dimensional fully and partially nested Archimedean copula.

●

u1 u2

u3

u4θ((u1.u2).u3) = 3

θ(u1.u2) = 4

θ(((u1.u2).u3).u4) = 2
●

u4 u3 u1 u2

θ(u4.u3) = 3 θ(u1.u2) = 4

θ((u4.u3).(u1.u2)) = 2

Figure 1: Fully and partially nested Archimedean copulae of dimension d = 4 with structures
s = (((12)3)4) on the left and s = ((43)(12)) on the right.

HAC can adopt arbitrarily complex structures s. This makes it a very flexible and simul-
taneously parsimonious distribution model. The generators φθj (·) within a single nested
Archimedean copula can come either from a single generator family or from different genera-
tor families. If the φθj (·)’s belong to the same family, then the required complete monotonicity

of φ−1θi+j
(·) ◦ φθj (·) usually imposes some constraints on the parameters θ1, . . . , θd−1. Theorem

4.4 of McNeil (2008) provides sufficient conditions on the generator functions to guarantee
that C is a copula. It holds that if φθj (·) ∈ L, for j = 1, . . . , d− 1, and φ−1θj+1

(·) ◦ φθj (·) have

completely monotone derivatives, then C(·) is a copula for d ≥ 2. For the majority of gener-
ators feasible HAC require decreasing parameters from the highest to the lowest hierarchical
level. However, in the case of different families within a single HAC, the condition of complete
monotonicity is not always fulfilled, see Hofert (2011). In our study, we consider HAC with
generators from the same family only. If we use the same single-parameter generator function
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on each level, but with a different value of θ, we may specify the whole distribution with
at most d − 1 parameters. From this point of view, the HAC approach can be seen as an
alternative to covariance driven models. Nevertheless, for HAC not only the parameters are
unknown, but also the structure has to be determined. One possible procedure for estimating
both the parameters and the structure is to enumerate all possible structures and to estimate
at first the parameters only. Next, the optimal structure can be determined by a suitable
goodness-of-fit test. This approach is, however, unrealistic in practice because the variety of
different structures is enormously large even in moderate dimensions. Okhrin et al. (2013a)
suggest computationally efficient procedures, which allow to estimate HAC recursively. The
HAC package provides these methods for estimating the parameters and structure in a user-
friendly way.

2.1. Estimation of HAC

In most cases the discussion is constrained to binary copulae, i.e., at each node of structure
only two variables are joined together. We impose this restriction because the numerical values
of the estimated parameters are compared during the procedure. Certainly, these comparisons
cannot be justified if one parameter corresponds to a tertiary or higher dimensional copula.
The entire procedure can be described in a recursive way where at the first iteration step
we fit a bivariate copula to every couple of the variables. The couple of variables with the
strongest dependency is selected. We denote the respective estimator of the parameter at the
first level by θ̂1 and the set of indices of the variables by I1. The selected couple is joined

together to define the pseudo-variable ZI1
def
= C{(I1); θ̂1, φ1}. At the next step, we proceed in

the same way by considering the remaining variables and the new pseudo-variable as the new
set of variables. This procedure allows us to determine the estimated structure of the copula.
If the restrictions on the parameters are always fulfilled, it leads to a feasible copula function
with d − 1 parameters. Nevertheless, if the true copula is not binary, the procedure might
return a slightly misspecified structure. Despite a difference in the structures, the difference
in the distribution functions is in general minor. To allow more sophisticated structures, we
aggregate the variables of the estimated copula afterwards. This is possible if the absolute
value of the difference of two successive nodes is smaller than a fixed small threshold, i.e.,
θ1 − θ2 < ε, with θ1 > θ2, as suggested by Okhrin et al. (2013a).

For better understanding, let us consider a three-dimensional example with uj , j = 1, 2, 3,

being uniformly distributed on [0, 1]. All possible pairs C(12)(u1, u2, θ̂(12)), C(13)(u1, u3, θ̂(13))

and C(23)(u2, u3, θ̂(23)) are estimated by regular ML, see Franke, Härdle, and Hafner (2011).
To compare the strengths of the fit one can use computationally complicated goodness-of-
fit tests, which do not necessarily lead to a function which will be a copula on the final
level of aggregation due to the restrictions on θθθ. For that reason we compare simply the
estimates θ̂(12), θ̂(13) and θ̂(23). This is due to the fact that for most Archimedean copulae,
the larger the parameter the stronger is the dependency (the larger the parameter the larger

is Kendall’s correlation coefficient). Let the strongest dependence be in the first pair θ̂1
def
=

θ̂(12) = max{θ̂(12), θ̂(13), θ̂(23)}, then I1 = {1, 2} and we introduce the pseudo-variable Z1
def
=

C1(I1; θ̂1) = C1(u1, u2; θ̂(12)). At the next and final step for this example we join together u3
and Z1. The theoretical validation is also reported by Proposition 1 of Okhrin et al. (2013b)
stating that HAC can be uniquely recovered from the marginal distribution functions and
all bivariate copula functions. Crucially for the superior recursive ML estimation procedure,
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pseudo-variables are regarded as functions of the underlying random variables X1, . . . , Xd and
are not explicitly computed.

In practice, the marginal distributions Fj , j = 1, . . . , d, are either parametrically F̂j(·) =
Fj(·, α̂ααj), where αααj denotes the vector of parameters of the j-th margin, or non-parametrically

F̂ (x) = (n+ 1)−1
∑n

i=1 I (Xi ≤ x) (3)

estimated in advance. Accordingly, the marginal densities f̂j(·), j, . . . , d, are estimated by an
appropriate kernel density estimator or using a parametric density.

Following Okhrin et al. (2013a), the estimation of the copula parameters at each step of the
iteration can be sketched as follows: at first stage, we estimate the parameter of the copula
at the first hierarchical level assuming that the marginal distributions are known. At further
stages, the next level copula parameter is estimated assuming that the margins as well as the
copula parameters at lower levels are known. Let X = {xij}> be the respective sample, for
i = 1, . . . , n, j = 1, . . . , d, and θθθ = (θ1, . . . , θd−1)

> be the parameters of the copula starting

with the lowest up to the highest level. The recursive multi-stage ML estimator θ̂θθ solves the
system (

∂L1
∂θ1

, . . . ,
∂Ld−1
∂θd−1

)>
= 0, (4)

where Lj =
n∑
i=1

lj(Xi), for j = 1, . . . , d− 1,

lj(Xi) = log

cj[{F̂m(xim)}m∈sj ; sj , θj
] ∏
m∈sj

f̂m(xim)


for j = 1, . . . , d− 1, i = 1, . . . , n,

where sj is referred to the (pseudo)-variables considered at the j-th estimation stage. Chen
and Fan (2006) and Okhrin et al. (2013a) provide asymptotic behaviour of the estimates. At
the moment, there are three different ways to estimate HAC:

(i) Ordinary (full) ML estimation, also denoted by FML, which is based on the complete log-
likelihood and hence on a predetermined structure.

(ii) The ML setup is based on realized pseudo-variables, i.e., the values of the pseudo-variables
for the given sample are explicitly computed, so that the bivariate density is maximized
with respect to the copula parameter at each step of the procedure. The benefits of the ML
method hold in particular for binary and non-complex structures. If the structure of the HAC
is, however, complex, the estimates around the initial node seem to be slightly biased. Note
that this procedure is not supported by asymptotic theory.

(iii) More precise results can be obtained by the recursive ML (RML) procedure discussed
in Okhrin et al. (2013a). The difference between the ML method and the recursive ML
procedure results from the maximized log-likelihood. While the bivariate log-likelihood is
considered at each estimation step of the ML method, the log-likelihood of the recursive ML
procedure corresponds at each estimation step to the full log-likelihood for the marginal HAC
regarded at that step. Compared to the full ML approach, the log-likelihood is only optimized
with respect to the parameter at the root node taken the estimated parameter(s) at lower
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hierarchical levels as given, so that the final HAC being a copula is ensured by shortening the
feasible parameter interval from above. From this point of view, the computational challenge
is to build the log-likelihood for the full ML estimation, which is almost solved by constructing
the d-dimensional density, see Section 3.4.

3. Applications of HAC

Core of the HAC package is the function estimate.copula estimating the parameter and
determining the structure for given data. Let us consider the dataset finData included
in the HAC package. It contains the residuals of the filtered daily log-returns of four oil
corporations: Chevron Corporation (CVX), Exxon Mobil Corporation (XOM), Royal Dutch
Shell (RDSA) and Total (FP), covering n = 283 observations from 20110202 to 20120319.
Intertemporal dependence is removed by usual ARMA-GARCH models, whose standardized
residuals are plotted in Figure 2 and used in the subsequent analysis:

R> library("HAC")

R> data("finData")

R> system.time(result <- estimate.copula(finData, margins = "edf"))

user system elapsed

0.095 0.008 0.175

R> result

Class: hac

Generator: Gumbel

((XOM.CVX)_{2.83}.(FP.RDSA)_{2.09})_{1.55}

The returned object result is of class hac, whose properties are explored below.

The multi-stage estimation procedure is illustrated in Table 1 for the four-dimensional ex-
ample from above. At the lowest hierarchical level, the parameter of all bivariate copulae
are estimated. The couple (XCVX, XXOM) produces the strongest dependency, hence the best fit.
Then, the pseudo-variable

Z(CVX.XOM)
def
= φθ̂(CVX.XOM)

[
φ−1
θ̂(CVX.XOM)

{
F̂XOM (XXOM)

}
+ φ−1

(θ̂CVX.XOM)

{
F̂CVX (XCVX)

}]
(5)

is defined. As the RML method is used by default, the involved variables XXOM and XCVX are not
substituted by the in the dataset. At the next nesting level the parameters of all bivariate
subsets are estimated and the variables XFP and XRDSA exhibit the best fit. Finally, the real-
izations of the remaining random variables Z(CVX.XOM) and Z(FP.RDSA) are grouped at the highest
level of the hierarchy, where Z(FP.RDSA) is defined analogously to Z(CVX.XOM).

In general, estimate.copula includes the following arguments:

R> names(formals(estimate.copula))
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Figure 2: Scatterplot of the sample finData.

zi,(CVX.XOM)
def
= Ĉ{F̂CVX(xi,CVX), F̂XOM(xi,XOM)} zi,(FP.RDSA)

def
= Ĉ{F̂FP(xi,FP), F̂RDSA(xi,RDSA)}

(CVX.FP)  θ̂(CVX.FP)
(CVX.XOM)  θ̂(CVX.XOM)
(FP.RDSA)  θ̂(FP.RDSA)
(FP.XOM)  θ̂(FP.XOM)

(RDSA.XOM)  θ̂(RDSA.XOM)

b
es

t
fi
t

(C
V
X
.
X
O
M
)

⇒
(CVX.XOM)FP  θ̂(CVX.XOM)FP

(CVX.XOM)RDSA  θ̂(CVX.XOM)RDSA
(FP.RDSA)  θ̂(FP.RDSA) b

es
t

fi
t

(F
P
.
R
D
S
A
)

⇒ ((CVX.XOM)(FP.RDSA))

 θ̂((CVX.XOM)(FP.RDSA))

Table 1: The estimation procedure in practice.
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[1] "X" "type" "method" "hac" "epsilon"

[6] "agg.method" "margins" "na.rm" "max.min" "..."

The whole procedure is divided in three (optional) computational blocks. First, the margins
are specified. Secondly, the copula parameter, θθθ, is estimated and finally the HAC is checked
for aggregation possibilities. The margins of the (n× d) data matrix, X, are assumed to fol-
low the standard Uniform distribution by default, i.e., margins = NULL, but the function also
permits non-uniformly distributed data as input if the argument margins is specified. The
marginal distributions can be determined non-parametrically, margins = "edf", or in a para-
metric way, e.g., margins = "norm". Following the latter approach, the log-likelihood of the
marginal Distributions is optimized with respect to the first (and second) parameter(s) of
the density dxxx. Based on these estimates, the values of the univariate margins are computed.
If the argument is defined as scalar, all margins are computed according to this specification.
Otherwise, different margins can be defined, e.g., margins = c("norm", "t", "edf") for a
three-dimensional sample. Except the Uniform distribution, all continuous Distributions

of the stats package provided by the R Core Team (2013) are available: "beta", "cauchy",
"chisq", "exp", "f", "gamma", "lnorm", "norm", "t" and "weibull". The values of non-
parametrically estimated distributions are computed according to Equation 3.

Inappropriate usage of this argument might lead to misspecified margins, e.g.,
margins = "exp" although the sample contains negative values. Even though the mar-
gins might be assumed to follow parametric distributions if margins != NULL, no joint log-
likelihood is maximized, but the margins are estimated in advance. As the asymptotic theory
works well for parametric and nonparametric estimation of margins, for the univariate analy-
sis we refer to other built-in packages. In practice, the column names of X should be specified,
as the default names X1, X2, ... are given otherwise.

A further optional argument of estimate.copula determines the estimation method. As
discussed above, we present three procedures: ML, which is based on the bivariate density,
full ML (FML) and recursive ML (RML) respectively. The routines of the copula package are
imported if a simple Archimedean copula is fitted to the data, see Yan (2007); Kojadinovic
and Yan (2010); Hofert and Mächler (2011).

At the final computational step of the procedure the binary HAC is checked for aggregation
possibilities, if epsilon > 0. The new dependency parameter is computed according to the
specification agg.method, i.e., the "min", "max" or "mean" of the original parameters. To
emphasize this point, recall the four-dimensional binary HAC

C(u1, . . . , u4; (((12)3)4), θθθ) = φθ3

{
φ−1θ3 ◦ C{u1, . . . , u3; ((12)3), (θ1, θ2)

>}+ φ−1θ3 (u4)
}
, (6)

from Section 2. If we assume additionally θ1 ≈ θ2, such that θ1 − θ2 < ε, the copula C(·) can
be approximated by

C∗(u1, . . . , u4; ((123)4), θθθ) = φθ3

{
φ−1θ3 ◦ C{u1, . . . , u3; (123), θ∗}+ φ−1θ3 (u4)

}
, (7)

where θ∗ = (θ1 + θ2)/2 for instance. This is referred to as the associativity property of
Archimedean copulae, see Theorem 4.1.5 of Nelsen (2006). If the variables of two nodes
are aggregated, the new copula is checked for aggregation possibilities as well. Beside this
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Generator Parameter φ (u; θ) τ (θ)

AMH θ ∈ [0, 1) (1− θ)/{exp(u)− θ} 1− 2/(3θ2)
{
θ + (1− θ)2 log(1− θ)

}
CLAYTON θ ∈ (0,∞) (u+ 1)−1/θ θ/(θ + 2)
FRANK θ ∈ (0,∞) − log [1− {1− exp(−θ)} exp(−u)] /θ 1 + 4/θ {D(θ)− 1}
GUMBEL θ ∈ [1,∞) exp

(
−u1/θ

)
1− 1/θ

JOE θ ∈ [1,∞) 1− {1− exp(−u)}1/θ 1− 4
∑∞

`=1 [`(θ`+ 2) {2 + θ(`− 1)}]−1

Table 2: Generator functions and the relations between the copula parameter and Kendall’s
τ(·). The Debye function D(·) involved in τ(·) for the family Frank is given by D(θ) =

1/θ
∫ θ
0 u/{exp(u)− 1}du.

threshold approach, the realized estimates θ̂1 and θ̂2 can obviously be used to test H0 :
θ1 − θ2 = 0, since the asymptotic distribution is known. On the other hand, this approach is
extremely expensive computationally. The estimation results for the non-aggregated and the
aggregated cases are presented in the following:

R> result.agg = estimate.copula(sample, margins = "edf", epsilon = 0.3)

R> plot(result, circles = 0.3, index = TRUE, l = 1.7)

R> plot(result.agg, circles = 0.3, index = TRUE, l = 1.7)

●

XOM CVX FP RDSA

θ(XOM.CVX) = 2.83 θ(FP.RDSA) = 2.09

θ((XOM.CVX).(FP.RDSA)) = 1.55 ●

XOM CVX

FP RDSAθ(XOM.CVX) = 2.83

θ((XOM.CVX).FP.RDSA) = 1.96

Figure 3: Plot of result on the left and result.agg on the right hand side.

3.1. The hac object

hac objects can be constructed by the general function hac, with the same name as the object
it creates, and its simplified version hac.full for building fully nested HAC. For instance,
consider the construction of a four-dimensional fully nested HAC with Gumbel generator, i.e.,

R> G.cop = hac.full(type = HAC_GUMBEL,

+ y = c("X4", "X3", "X2", "X1"),

+ theta = c(1.1, 1.8, 2.5))

R> G.cop

Class: hac

Generator: Gumbel

(((X1.X2)_{2.5}.X3)_{1.8}.X4)_{1.1}
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where y denotes the vector of variables of class character and theta denotes the vector
of dependency parameters. The parameters should be ascending ordered, so that the first
parameter, 1.1, is referred to the initial node of the HAC and the last parameter, 2.5,
corresponds to the first hierarchical level with variables "X1" and "X2". The vector y has to
contain one element more than the vector theta.

The returned output of hac objects is structured by three lines: (i) the object’s Class, (ii)
the Generator family and (iii) the HAC structure s. The structure can also be produced by
the supplementary function tree2str. Variables, grouped at the same node are separated by
a dot “.” and the dependency parameters are printed within the curly parentheses.

Partially nested Archimedean copulae are constructed by hac with the main argument tree.
For a better understanding let us first consider a four-dimensional simple Archimedean copula
with dependency parameter θ = 2:

R> hac(tree = list("X1", "X2", "X3", "X4", 2))

Class: hac

Generator: Gumbel

(X1.X2.X3.X4)_{2}

The copula tree is constructed by a list consisting of four character objects, i.e.,
"X1", "X2", "X3", "X4", and a number, which denotes the dependency parameter of the
Archimedean copula. According to the theoretical construction of HAC in Section 2, we can
induce structure by substituting margins through a subcopula. The four variables "X1", "X2",
"X3", "X4" can, for example, be structured by

R> hac(tree = list(list("X1", "X2", 2.5), "X3", "X4", 1.5))

Class: hac

Generator: Gumbel

((X1.X2)_{2.5}.X3.X4)_{1.5}

where the nested component, list("X1", "X2", 2.5), is the subcopula at the lowest hi-
erarchical level. Note that the nested component is of the same general form list(...,

numeric(1)) as the simple Archimedean copula, where numeric(1) denotes the dependency
parameter and “...” refers to arbitrary variables and subcopulae, which may contain sub-
copulae as well, like presented in the following:

R> HAC = hac(tree = list(list("Y1", list("Z3", "Z4", 3), "Y2", 2.5),

+ list("Z1", "Z2", 2), list("X1", "X2", 2.4),

+ "X3", "X4", 1.5))

R> HAC

Class: hac

Generator: Gumbel

((Y1.(Z3.Z4)_{3}.Y2)_{2.5}.(Z1.Z2)_{2}.(X1.X2)_{2.4}.X3.X4)_{1.5}
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●

Y1

Z3 Z4

Y2 Z1 Z2 X1 X2

X3 X4θ = 2.5

θ = 3

θ = 2 θ = 2.4

θ = 1.5

Figure 4: Plot of the object HAC.

We cannot avoid the notation becoming more cumbersome for higher dimensions, but the
principle stays the same for arbitrary dimensions, i.e., variables are substituted by lists of
the general form list(..., numeric(1)). The function hac provides a further argument for
specifying the type of the HAC.

3.2. Graphics

As the string representation of the structure becomes more unclear as dimension increases,
the package allows to produce graphics of hac objects by the generic plot function. Figure 4
illustrates for example the dependence structure of the lastly defined object HAC.

R> plot(HAC, cex = 0.8, circles = 0.35)

The explanatory power of these plots can be enhanced by several of the usual plot parameters:

R> names(formals(plot.hac))

[1] "x" "xlim" "ylim" "xlab" "ylab"

[6] "col" "fg" "bg" "col.t" "lwd"

[11] "index" "numbering" "theta" "h" "l"

[16] "circles" "digits" "..."

The optional, boolean argument theta determines whether the dependency parameter of
the copula θ or Kendall’s τ is printed, whereby Kendall’s τ cannot be easily interpreted in
the usual way for more than two dimensions. The supplementary function theta2tau com-
putes Kendall’s rank correlation coefficient based on the value of the dependency parameter,
whereas tau2theta corresponds to the inverse function, see Table 2. If index = TRUE, strings
illustrating the subcopulae of the nodes are used as subscripts of the dependency parameters.
If, additionally, numbering = TRUE, the parameters are numbered, such that the subscripts
correspond to the estimation stages if the non-aggregated output of estimate.copula is plot-
ted. The radius of the circles, the width l and the height h of the rectangles and the specific
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colors of the lines and the text can be adjusted. Further arguments “...” can, for example,
be used to modify the font size cex or to include a subtitle sub.

3.3. Random sampling

To be in line with other R-packages providing tools for different univariate and multivariate
distributions we provide: (i) dHAC for computing the values of the copula density, (ii) pHAC

for the cumulative distribution function and (iii) rHAC for simulations. Sampling methods are
imported from the copula package and rely on the algorithm suggested in Hofert and Mächler
(2011), who summarize the procedure for the former nacopula package as follows:

Algorithm 1. Let C(·) be a nested Archimedean copula with root copula C0(·) generated by
φ0. Let U be a vector of the same dimension as C0(·).

1. sample from inverse Laplace transform LS−1 of φ0, i.e., V0 ∼ F0(·)
def
= LS−1 (φ0)

2. for all components u of C0(·) that are nested Archimedean copulae do:

(a) set C1(·) with generator φ1(·) to the nested Archimedean copula u

(b) sample V01 ∼ F01(·)
def
= LS−1 {φ01 (·;V0)}

(c) set C0(·)
def
= C1(·), φ0(·)

def
= φ1(·), and V0

def
= V01 and continue with 2.

3. for all other components u of C0(·) do

(a) sample R ∼ Exp(1)

(b) set the component of U corresponding to u to φ0 (R/V0)

4. return U

The function rHAC requires only two arguments: (i) the sample size n and (ii) an object of
the class hac specifying the characteristics of the underlying HAC, e.g.,

R> sim.data = rHAC(500, G.cop)

R> pairs(sim.data, pch = 20)

In particular, the contributions of McNeil (2008), Hofert (2008) and Hofert (2011) provide
the theoretical foundations to sample computationally efficient random vectors from HAC.
Algorithm 1 exploits the recursively determined structure of HAC and samples from F0 and
F01, which are comprehensively discussed in Hofert (2011) and Hofert and Mächler (2011).

3.4. The cdf and density

The arguments for pHAC are a hac object and a sample X, whose column names should be
identical to the variables’ names of the hac object, e.g.,

R> probs = pHAC(X = sim.data, hac = G.cop)
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Figure 5: Scatterplot of the sample sim.data, which is simulated from G.cop associated with
a four dimensional HAC-based Gumbel copula.

As the copula density is defined as d-th derivative of the copula C(·) with respect to the
arguments uj , j = 1, . . . , d, c.f. Savu and Trede (2010), the explicit form of the density varies
with the structure of the underlying HAC. Hence, including the explicit form of all possible d-
dimensional copula densities is absolutely unrealistic. Our function dHAC derives an analytical
expression of the density for a given hac object, which can be instantaneously evaluated if
eval = TRUE. The analytical expression of the density is found by subsequently using the D

function to differentiate the algebraic form of the copula “symbolically” with respect to the
variables of the inserted hac object. Although the derivation and evaluation of the density
is computationally and numerically demanding, dHAC provides a flexible way to work with
HAC densities in practice, because they do not need to be manually derived or numerically
approximated. Since the densities of the two-dimensional Archimedean copulae are frequently
called during the pseudo multi-stage estimation procedure (ML), their closed form expressions
are given explicitly.

3.5. Empirical copula

As long as our package does not cover goodness-of-fit tests, which are difficult to implement
in general and involve computational intensive techniques via bootstrapping, see Genest,
Rémillard, and Beaudoin (2009), it might be difficult to justify the choice of a parametric
assumption. However, the values of probs can be compared to those of the empirical copula,
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Figure 6: The values of probs on the x-axis against the values of probs.emp.

i.e.,

Ĉ (u1, . . . , ud) = n−1
n∑
i=1

d∏
j=1

I
{
F̂j (Xij) ≤ uj

}
, (8)

where F̂j(·) denotes the estimated marginal distribution function of variable Xj . Figure 6
suggests a proper fit of the empirical copula computed by

R> probs.emp = emp.copula.self(sim.data, proc = "M")

There are two functions which can be used for computing the empirical copula:

R> emp.copula(u, x, proc = "M", sort = "none", margins = NULL,

+ na.rm = FALSE, ...)

R> emp.copula.self(x, proc = "M", sort = "none", margins = NULL,

+ na.rm = FALSE, ...)

The difference between the arguments of these functions is that emp.copula requires a matrix
u, at which the estimated function is evaluated. This can, in particular, be helpful, when the
sample is decomposed to evaluate the out-of-sample performance as the empirical copula
can be regarded as natural benchmark. In contrast, emp.copula.self evaluates Ĉ(·) at the
sample x used for the estimation and thus, the returned values can be considered as in-sample
fit. The argument proc enables the user to choose between two computational methods. We
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Figure 7: The figure shows the computational times for an increasing sample size but a fixed
dimension d = 5 on a log-log scale. The solid line is referred to proc = "M" and the dashed
line to proc = "A".

recommend to use the default method, proc = "M", which is based on matrix manipulations,
because its computational time is just a small fraction of the taken time of method "A",
which is based on apply, see Figure 7. However, method "M" is sensitive with respect to
the size of the working memory and therefore inapplicable for very large datasets. Note
that standard applications, e.g., measuring the VaR of a portfolio, are based on 250 or 500
observations. Figure 7 illustrates rapidly increasing computational times of the matrix based
method for more than 5000 observations until the method collapses. In contrast, the runtimes
of the alternative method proc = "A" are more robust against an increasing sample size. The
computational times are less sensitive with respect to the dimension and we recommend using
the default method up to d = 100 for non-large sample sizes. Another possibility to deal with
large datasets is specifying the matrix u manually in order to reduce the number of vectors
which are to be evaluated.

4. Simulation study

To ensure the accuracy of the proposed methods, we generate random data from six copula

models of different dimension Cji
def
= Cj (·; si, θθθi), for i = 1, 2, 3 and j = C,G, and show that

the estimates almost coincide with the true model specification. Here, j denotes the copula
family (Clayton or Gumbel) and the structures are given by s1 = ((12)3), s2 = ((((12)3)4)5)
and s3 = ((12)(34)5). The values of θθθi are presented in Table 3 and Table 4. They are chosen
such that a similar strength of dependence is produced by the Clayton and Gumbel based
models.

The summary statistics of Table 3 and Table 4 rely on n = 1000 estimates, whereby only
estimates with the same structure can be compared. For this reason the procedure was m
times replicated till n = 1000 estimates were available. As estimate.copula approximates
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Statistics
Model θθθ min median mean max sd

CG
1

θ2 = 1.500 1.31 1.49 1.50 1.77 0.07
θ1 = 3.000 2.56 3.00 3.00 3.51 0.15

CC
1

θ2 = 1.000 0.61 0.99 1.00 1.47 0.13
θ1 = 4.000 3.13 4.02 4.03 5.09 0.28

CG
2

θ4 = 1.125 1.00 1.10 1.11 1.24 0.04
θ3 = 1.500 1.28 1.45 1.45 1.71 0.07
θ2 = 2.250 1.92 2.24 2.24 2.81 0.12
θ1 = 4.500 3.86 4.49 4.50 5.20 0.23

CC
2

θ4 = 0.250 0.00 0.17 0.17 0.39 0.07
θ3 = 1.000 0.54 0.92 0.92 1.28 0.12
θ2 = 2.500 1.88 2.48 2.50 3.21 0.20
θ1 = 7.000 5.77 7.02 7.04 8.91 0.45

Table 3: The models for the Gumbel family CG
1 , CG

2 and for the Clayton family CC
1 , CC

2 ,
where θθθ denotes the true copula parameters.

the true structure, we set epsilon = 0.15 for CG
3 and epsilon = 0.20 for CC

3 , which are
not based on a binary structure and employ the RML procedure. Note that the RML procedure
attempts at aggregating the copula tree after each estimation step. The simulated samples for
the copula estimation consist of 250 observations for the copula types in order to illustrate the
finite sample properties of the procedures. Table 3 and Table 4 indicate, that the estimation
procedure works properly for the suggested models, as the estimates are on average consistent
with the true parameters. Nevertheless, a few points deserve being mentioned: (i) The multi-
stage procedure detects the true structure for the binary HAC in n/m = 100% and the
recursive ML procedure for the non-binary HAC in at least n/m = 99% of the cases as
long as the parameters exhibit the imposed distance and the permutation symmetry of the
variables at the same node is taken into consideration. (ii) The estimates at lower hierarchical
levels show a higher volatility than the estimates close to the initial node and the estimates for
the Clayton models are more volatile than the estimates of the Gumbel based HAC. (iii) All
estimated models indicate more imprecise estimates for higher nesting levels, but the gains
from full ML estimation regarding the precision are only observable for the estimates at the
root node of CG

3 , see Table 4. However, this minor improvement is costly since the results are
based on a preestimated structure. (iv) These observations justify choosing different values
of epsilon for CG

3 and CC
3 , as the tuning parameter should reflect the variability of the

parameters. Theoretically, epsilon can be different for each aggregation of the structure so
that the parameter variability is correctly represented. This, however, becomes infeasible in
practice, because the number of nodes contained in the true structure is generally unknown.
If the parameters are closer and/or the value of epsilon is chosen smaller, the amount of
correctly classified structures declines. On the other hand, larger sample sizes permit smaller
values of epsilon as the parameters are more precisely estimated.

5. Conclusion



Ostap Okhrin, Alexander Ristig 17

Statistics for recursive ML
Model θθθ s̄ min median mean max sd

CG
3

θ3 = 1.125 ((12)(534)) = 00.20% 1.00 1.10 1.11 1.24 0.03
θ2 = 1.500 ((12)((34)5)) = 00.40% 1.31 1.50 1.50 1.77 0.07
θ1 = 3.000 ((12)534) = 00.10% 2.59 3.01 3.01 3.59 0.15

CC
3

θ3 = 0.250
((12)((34)5)) = 00.30%

0.05 0.25 0.25 0.47 0.06
θ2 = 1.000

(((34)(12))5) = 00.39%
0.63 1.00 1.01 1.53 0.12

θ1 = 4.000 3.19 4.00 4.02 4.94 0.29

Statistics for full ML

CG
3

θ3 = 1.125
−

1.03 1.13 1.13 1.23 0.03
θ2 = 1.500 1.31 1.50 1.50 1.77 0.07
θ1 = 3.000 2.59 3.01 3.01 3.60 0.15

CC
3

θ3 = 0.250
−

0.09 0.25 0.25 0.47 0.05
θ2 = 1.000 0.64 1.00 1.01 1.53 0.12
θ1 = 4.000 3.20 3.99 4.02 4.94 0.29

Table 4: The model for the Gumbel family CG
3 and for the Clayton family CC

3 , where θθθ
denotes the true copula parameters and the column s̄ refers to the percentage of incorrectly
classified structures based on n = 1000 replications.

The HAC package focuses on the computationally efficient estimation of hierarchical
Archimedean copula, which is based on grouping binary structures within a recursive multi-
stage ML procedure. Its theoretical and practical advantages are (i) avoiding the demand-
ing asymptotic theory, which arises due to constrained one-step ML estimation and (ii) the
consecutive optimization of the log-likelihood instead of the singular optimization of the
d-dimensional one with respect to several parameters. Since HAC permit modeling large-
dimensional random vectors, the package provides a function for producing graphics of the
related hac objects. According to the usual naming of distributions in R, we provide dHAC,
pHAC and rHAC to compute the values of density- and distribution functions or to sample from
arbitrary HAC. Finally, the accuracy of the methods has been shown in a small simulation
study.
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Bárdossy A, Li J (2008). “Geostatistical Interpolation Using Copulas.” Water Resources
Research, 44(7), 1–15.

Chen X, Fan Y (2006). “Estimation and Model Selection of Semiparametric Copula-Based
Multivariate Dynamic Models under Copula Misspecification.” Journal of Econometrics,
135, 125–154.

Cherubini U, Luciano E, Vecchiato W (2004). Copula Methods in Finance. John Wiley &
Sons, New York.

Embrechts P, Lindskog F, McNeil AJ (2003). “Modeling Dependence with Copulas and Appli-
cations to Risk Management.” In ST Rachev (ed.), Handbook of Heavy Tailed Distributions
in Finance. Elsevier, North-Holland.

Embrechts P, McNeil AJ, Straumann D (1999). “Correlation and Dependence in Risk Man-
agement: Properties and Pitfalls.” In Risk Management: Value at Risk and Beyond, pp.
176–223. Cambridge University Press.
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