## ----knitr_setup, include = FALSE--------------------------------------------- knitr::opts_chunk$set( echo = TRUE, message=FALSE, results = "asis", fig.width=7, fig.height=5, fig.asp=0.5, collapse = TRUE, comment = "#>" # dev = 'pdf' ) ## ----setup, include = FALSE--------------------------------------------------- rm(list = ls()) # clear objects graphics.off() # close graphics windows # library(wavemulcor) data(exchange) returns <- diff(log(as.matrix(exchange))) returns <- ts(returns, start=1970, freq=12) N <- dim(returns)[1] ## ----label=wmc_code,echo=c(-1:-3,-6:-8)--------------------------------------- ## Based on data from Figure 7.8 in Gencay, Selcuk and Whitcher (2001) ## plus one random series. wf <- "d4" J <- trunc(log2(N))-3 set.seed(140859) demusd.modwt <- brick.wall(modwt(returns[,"DEM.USD"], wf, J), wf) jpyusd.modwt <- brick.wall(modwt(returns[,"JPY.USD"], wf, J), wf) xrand.modwt <- brick.wall(modwt(rnorm(length(returns[,"DEM.USD"])), wf, J), wf) xx <- list(demusd.modwt, jpyusd.modwt, xrand.modwt) names(xx) <- c("DEM.USD","JPY.USD","rand") Lst <- wave.multiple.correlation(xx) ## ----label=plot_wmc, echo=-1:-2, results='hide'------------------------------- ##Producing correlation plot Lst <- wave.multiple.regression(xx) plot_wave.multiple.correlation(Lst) ## ----label=wmr_code----------------------------------------------------------- Lst <- wave.multiple.regression(xx) ## ----label=plot_wmr, echo=-1, results='hide'---------------------------------- ##Producing regression plot plot_wave.multiple.regression(Lst) # nsig=2) ## ----label=wmcr_code,echo=-5:-6----------------------------------------------- wf <- "d4" J <- trunc(log2(N))-3 lmax <- 36 set.seed(140859) demusd.modwt <- brick.wall(modwt(returns[,"DEM.USD"], wf, J), wf) jpyusd.modwt <- brick.wall(modwt(returns[,"JPY.USD"], wf, J), wf) rand.modwt <- brick.wall(modwt(rnorm(length(returns[,"DEM.USD"])), wf, J), wf) # --------------------------- xx <- list(demusd.modwt, jpyusd.modwt, rand.modwt) names(xx) <- c("DEM.USD","JPY.USD","rand") Lst <- wave.multiple.cross.regression(xx, lmax) ## ----label=heat_wmcc, echo=-1, results='hide'--------------------------------- ##Producing correlation heat map heatmap_wave.multiple.cross.correlation(Lst, lmax) #, by=3, ci=NULL, pdf.write=NULL) ## ----label=plot_wmcc, echo=-1, results='hide'--------------------------------- ##Producing correlation plot plot_wave.multiple.cross.correlation(Lst, lmax) #, by=2) ## ----label=plot_wmcr, echo=-1, results='hide'--------------------------------- ##Producing correlation plot plot_wave.multiple.cross.regression(Lst, lmax) #, by=2) ## ----label=wlmr_code,echo=-7:-8, results='hide'------------------------------- wf <- "d4" M <- 30 window <- "gauss" #uniform" J <- trunc(log2(N))-3 set.seed(140859) demusd.modwt <- brick.wall(modwt(returns[,"DEM.USD"], wf, J), wf) jpyusd.modwt <- brick.wall(modwt(returns[,"JPY.USD"], wf, J), wf) xrand.modwt <- brick.wall(modwt(rnorm(length(returns[,"DEM.USD"])), wf, J), wf) xx <- list(demusd.modwt, jpyusd.modwt, xrand.modwt) names(xx) <- c("DEM.USD","JPY.USD","rand") Lst <- wave.local.multiple.regression(xx, M, window=window) #, ymaxr=1) ## ----label=heat_wlmc, echo=-1, results='hide'--------------------------------- ##Producing correlation heat map heatmap_wave.local.multiple.correlation(Lst) #, xaxt="s", ci=NULL, pdf.write=NULL) ## ----label=plot_wlmc, echo=-1, results='hide'--------------------------------- ##Producing line plots with CI plot_wave.local.multiple.correlation(Lst) #, xaxt="s") ## ----label=plot_wlmr, echo=-1, results='hide'--------------------------------- ##Producing regression plots plot_wave.local.multiple.regression(Lst) #, xaxt="s") ## ----label=wlmcr_code,echo=-7:-8, results='hide'------------------------------ wf <- "d4" M <- 30 window <- "gauss" #uniform" J <- trunc(log2(N))-3 lmax <- 5 set.seed(140859) demusd.modwt <- brick.wall(modwt(returns[,"DEM.USD"], wf, J), wf) jpyusd.modwt <- brick.wall(modwt(returns[,"JPY.USD"], wf, J), wf) rand.modwt <- brick.wall(modwt(rnorm(length(returns[,"DEM.USD"])), wf, J), wf) xx <- list(demusd.modwt, jpyusd.modwt, rand.modwt) names(xx) <- c("DEM.USD","JPY.USD","rand") Lst <- wave.local.multiple.cross.regression(xx, M, window=window, lag.max=lmax) #, ymaxr=1) ## ----label=heat_wlmcc_lag, echo=-1, results='hide'---------------------------- ##Producing cross-correlation heat map heatmap_wave.local.multiple.cross.correlation(Lst, lmax=lmax, lag.first=FALSE) #, xaxt="s", ci=NULL, pdf.write=NULL) ## ----label=heat_wlmcc_lev, echo=-1, results='hide'---------------------------- ##Producing cross-correlation heat map heatmap_wave.local.multiple.cross.correlation(Lst, lmax=2, lag.first=TRUE) #, xaxt="s", ci=NULL, pdf.write=NULL) ## ----label=plot_wlmcc, echo=-1, eval=FALSE------------------------------------ # ##Producing cross-correlation plot # plot_wave.local.multiple.cross.correlation(Lst, lmax, lag.first=FALSE) #, xaxt="s") ## ----label=plot_wlmcr, echo=-1, eval=FALSE------------------------------------ # ##Producing cross-regression plot # plot_wave.local.multiple.cross.regression(Lst, lmax, nsig=2) #, xaxt="s")