Version: | 1.3 |
License: | GPL-2 | GPL-3 [expanded from: GPL] |
Description: | Makes available code necessary to reproduce figures and tables in papers on the WaveD method for wavelet deconvolution of noisy signals as presented in The WaveD Transform in R, Journal of Statistical Software Volume 21, No. 3, 2007. |
Title: | Wavelet Deconvolution |
Author: | Marc Raimondo <marcr@maths.usyd.edu.au> and Michael Stewart <michael.stewart@sydney.edu.au> |
Maintainer: | Michael Stewart <michael.stewart@sydney.edu.au> |
URL: | https://www.jstatsoft.org/v21/i02 |
NeedsCompilation: | no |
Packaged: | 2024-02-14 07:34:41 UTC; michaels |
Repository: | CRAN |
Date/Publication: | 2024-02-14 08:01:26 UTC |
Blurr Signal
Description
Compute the convolution of $f$ and $g$ in the periodic setting.
Usage
BlurSignal(f, g)
Arguments
f |
A sample of $f$. |
g |
A sampel of $g$ |
Value
Returns the convolution of $f$ and $g$.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
x=1:10
y=1:10
BlurSignal(x,y)
Forward Wavelet Transform (translation invariant).
Description
Compute the Forward Wavelet Transform of a signal $f$ for the Meyer wavelet (translation invariant).
Usage
FWT_TI(f_fft, psyJ_fft)
Arguments
f_fft |
vector of the Fourier coefficient of $f$. |
psyJ_fft |
vector of the Fourier coefficient of the Meyer wavelet. |
Value
vector of wavelet coefficients (non-ordered).
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
psyJ_fft=wavelet_YM(4,10,3);
f_fft=fft(sin(2*pi*seq(0,1,le=1024)))
FWT_TI(f_fft,psyJ_fft)
FWaveD
Description
Computes the Forward WaveD Transform.
Usage
FWaveD(y,g=1,L=3,deg=3,F=(log2(length(y))-1),thr=rep(0,log2(length(y))),SOFT=FALSE)
Arguments
y |
Sample of |
g |
Sample of |
L |
Lowest resolution level; the default is 3. |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3 (the default). |
F |
Finest resolution level; the default is the data-driven choice j1 (see Value below). |
thr |
A vector of length |
SOFT |
if SOFT=TRUE, uses the soft thresholding policy as opposed to the hard (SOFT=FALSE, the default). |
Value
Returns a vector of wavelet coefficients of length n (the same length as y),
the last n/2
entries are wavelet coefficients at resolution level J-1
, where
J = \log_2(n)
; the n/4
entries before that are the wavelet coefficients at
resolution level J-2
, and so on until level L. In addition the 2^L
entries
are scaling coefficients at coarse level C=L
.
References
Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004), 'Wavelet deconvolution in a periodic setting', Journal of the Royal Statistical Society, Series B 66(3),547–573. with discussion pp.627–652.
Raimondo, M. and Stewart, M. (2006), ‘The WaveD Transform in R’, preprint, School and Mathematics and Statistics, University of Sydney.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
lidar.w=FWaveD(data$lidar.blur,data$g)
Hard Threshold
Description
Apply hard threshold.
Usage
HardThresh(y, t)
Arguments
y |
vector |
t |
threshold |
Value
vector $y$ thresholded: entries below $t$ are replaced by zeros.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
HardThresh(1:5,2)
Inverse Forward Wavelet Transform (translation invariant).
Description
Compute the Inverse Forward Wavelet Transform of a signal $f$ for the Meyer wavelet (translation invariant).
Usage
IFWT_TI(f_fft, psyJ_fft, lev, thr, nn, SOFT = FALSE)
Arguments
f_fft |
vector of the Fourier coefficient of $f$ |
psyJ_fft |
vector of the Fourier coefficient of the Meyer wavelet. |
lev |
resolution level |
thr |
threshold (has lentgh=1) |
nn |
sample size |
SOFT |
if SOFT=TRUE, uses the soft thresholding policy as opposed to the hard (SOFT=FALSE, the default). |
Value
Inverse Forward Wavelet Transform of a signal $f$, after thresholding.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
WaveD
, ~~~
Examples
psyJ_fft=wavelet_YM(4,10,3);
f_fft=fft(sin(2*pi*seq(0,1,le=1024)));
IFWT_TI(f_fft, psyJ_fft, 4, 0, 1024)
Computes the Inverse WaveD transform
Description
Computes the Inverse WaveD transform based on a vector of wavelet coefficients.
Usage
IWaveD(w, C = 3, deg = 3, F = log2(length(w)))
Arguments
w |
vector of wavelet coefficents, must be of dyadic length; typically returned by the function |
C |
coarse resolution level |
deg |
degree of the Meyer wavelet |
F |
fine resolution level |
Value
Returns a vector of the same length as w, giving the inverse wavelet transform.
Author(s)
Marc Raimondo
References
Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004), 'Wavelet deconvolution in a periodic setting', Journal of the Royal Statistical Society, Series B 66(3),~547–573. with discussion pp.627-652.
Raimondo, M. and Stewart, M. (2006), ‘The WaveD Transform in R’, preprint, School and Mathematics and Statistics, University of Sydney.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
lidar.w=FWaveD(data$lidar.blur,data$g) # lidar.blur is lidar*g
IWaveD(lidar.w) # same as lidar
Meyer wavelet window
Description
Auxiliary window function for Meyer wavelets.
Usage
MeyerWindow(xi, deg)
Arguments
xi |
Abscissa values for window evaluation |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3 |
Value
a sampel vector of the window function for Meyer wavelets.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plot(seq(0,1,le=1000),MeyerWindow(seq(0,1,le=1000),3),type='l')
Maxiset threshold
Description
Compute the maxiset threshold for WaveD fit.
Usage
MultiThresh1(s, g, L, eta)
Arguments
s |
noise standard deviation |
g |
Sample of g or g + (Gaussian noise). |
L |
Lowest resolution level. |
eta |
Tuning parameter of the maxiset threshold. |
Value
vector of thresholds
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
MultiThresh1(.1, sin(2*pi*seq(0,1,le=1024)), 3, sqrt(2))
Phase matrix
Description
compute phase matrix, auxilliary function compute wavelet coefficients in the Fourier Domain
Usage
PhaseC(l, j)
Arguments
l |
Fourier frequency (integer) |
j |
resolution level (integer) |
Value
Matrix of phases.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
PhaseC(3,4)
Soft Threshold
Description
Apply soft threshold.
Usage
SoftThresh(y, t)
Arguments
y |
vector |
t |
threshold |
Value
vector $y$ thresholded: entries below $t$ are replaced by shrunken versions.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
SoftThresh(1:5,2)
WaveD
Description
Performs statistical wavelet deconvolution using Meyer wavelet.
Usage
WaveD(yobs,g=c(1,rep(0,(length(yobs)-1))),MC=FALSE,SOFT=FALSE,
F=find.j1(g,scale(yobs))[2],L=3,deg=3,eta=sqrt(6),
thr=maxithresh(yobs,g,eta=eta),label="WaveD")
Arguments
yobs |
Sample of |
g |
Sample of |
MC |
Option to only return the (fast) translation-invariant WaveD estimate (MC=TRUE) as opposed to the full WaveD output (MC=FALSE, the default), as described below. MC=TRUE recommended for Monte Carlo simulation. |
SOFT |
if SOFT=TRUE, uses the soft thresholding policy as opposed to the hard (SOFT=FALSE, the default). |
F |
Finest resolution level; the default is the data-driven choice j1 (see Value below). |
L |
Lowest resolution level; the default is 3. |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3 (the default). |
eta |
Tuning parameter of the maxiset threshold; default is |
thr |
A vector of length |
label |
Auxiliary plotting parameter; do not change this. |
Value
In the case that MC=TRUE, WaveD returns a vector consisting of the translation-invariant WaveD estimate. In the case that MC=FALSE (the default), WaveD returns a list with components
waved |
translation invariant WaveD transform; in the case MC=TRUE this is all that is returned. |
ordinary |
ordinary WaveD transform |
FWaveD |
Forward WaveD Transform; see |
w |
alternate name for FWaveD |
w.thr |
thresholded version of w |
IWaveD |
Inverse WaveD Transform |
iw |
alternate name for IWaveD |
s |
estimate of the noise standard deviation |
j1 |
estimate of optimal resolution level (for maxiset threshold). |
F |
Fine resolution level used (may be different to j1). |
M |
estimate of optimal Fourier frequency (for maxiset threshold). |
thr |
vector of thresholds used (default is maxiset threshold). |
percent |
percentage of thresholding per resolution level |
noise |
noise proxy, wavelet coefficients of the raw data at the largest resolution level, used for estimating noise features. |
ps |
P-value of the Shapiro-Wilk test for normality applied to the noise proxy. |
residuals |
wavelet coefficients that have been removed before fine level F. |
Author(s)
Marc Raimondo and Michael Stewart
References
Cavalier, L. and Raimondo, M. (2007), ‘Wavelet deconvolution with noisy eigen-values’, IEEE Trans. Signal Process, Vol. 55(6), In the press.
Donoho, D. and Raimondo, M. (2004), ‘Translation invariant deconvolution in a periodic setting’, The International Journal of Wavelets, Multiresolution and Information Processing 14(1),415–423.
Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004), 'Wavelet deconvolution in a periodic setting', Journal of the Royal Statistical Society, Series B 66(3),547–573. with discussion pp.627–652.
Raimondo, M. and Stewart, M. (2007), ‘The WaveD Transform in R’, Journal of Statistical Software.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
doppler.wvd=WaveD(data$doppler.noisy,data$g)
summary(doppler.wvd)
WaveD projection, coarse level.
Description
Compute WaveD projection of $f$, coarse level.
Usage
WaveDjC(y_fft, f2fft, j)
Arguments
y_fft |
Fourier transform of $f$. |
f2fft |
Fourier transform of the wavelet. |
j |
Resolution level. |
Value
Vector: WaveD projection of $f$, coarse resolution level.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
waveJ0_fft=scaling_YM(3,10,3);
WaveDjC(fft(sin(2*pi*seq(0,1,le=1024))),waveJ0_fft,3)
WaveD projection, details.
Description
Compute WaveD projection of $f$, details.
Usage
WaveDjD(y_fft, f2fft, j)
Arguments
y_fft |
Fourier transform of $f$. |
f2fft |
Fourier transform of the wavelet. |
j |
Resolution level. |
Value
Vector: WaveD projection of $f$, details.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
waveJ0_fft=wavelet_YM(5,10,3);
WaveDjD(fft(sin(2*pi*seq(0,1,le=1024))),waveJ0_fft,3)
WaveD projection, fine resolution level.
Description
Compute WaveD projection of $f$, fine resolution level.
Usage
WaveDjF(f1fft, f2fft, j)
Arguments
f1fft |
Fourier transform of $f$. |
f2fft |
Fourier transform of the wavelet. |
j |
Resolution level. |
Value
Vector: WaveD projection of $f$, fine resolution level.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
waveJ0_fft=fine_YM(9,10,3);
WaveDjF(fft(sin(2*pi*seq(0,1,le=1024))),waveJ0_fft,3)
Dyadic band
Description
Returns a vector of integers 2^j+1,\ldots,2^{j+1}
.
Usage
dyad(j)
Arguments
j |
Resolution Level |
Value
Returns a vector of integers 2^j+1,...,2^{j+1}
.
Author(s)
Marc Raimondo
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
lidar.w=FWaveD(data$lidar.blur,data$g)
lidar.w[dyad(7)]
Lexicographic ordering (dyadic)
Description
return the index of a wavelet coefficient using dyadic lexicographic ordering
Usage
dyadjk(j, k)
Arguments
j |
Resolution level (integer) |
k |
Location parameter (0,1,...,2^j-1) |
Value
Returns an integer giving the index position
of the wavelet coefficient w_{j,k}
in a vector of wavelet
coefficients.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), ‘The WaveD Transform in R’, Journal of Statistical Software.
See Also
Examples
print(dyadjk(5,4))
Shift Fourier frequencies
Description
rearranges the outputs of fft by moving the zero-frequency component to the center of the array
Usage
fftshift(y)
Arguments
y |
A vector |
Value
Rearranged version of the vector $y$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), ‘The WaveD Transform in R’, Journal of Statistical Software.
See Also
Examples
print(fftshift(1:5))
Fine resolution level for WaveD fit
Description
Find the optimal Fourier frequency and resolution level for WaveD fit
Usage
find.j1(g, sigma)
Arguments
g |
vector (convolution kenel) |
sigma |
noise standard deviation |
Value
M |
Fourier frequency |
j1 |
Resolution level |
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), ‘The WaveD Transform in R’, Journal of Statistical Software.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
find.j1(data$g,data$sigma)
Find positive entries
Description
Find positive entries in a vector
Usage
findONE(x)
Arguments
x |
vector |
Value
A vector of indices where $x$ has positive values.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
findONE(-5:5)
Find negative entries
Description
Find negative entries in a vector
Usage
findZERO(x)
Arguments
x |
vector |
Value
A vector of indices where $x$ has negative values.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
findZERO(-5:5)
~~function to do ... ~~
Description
generate Fourier transform of the Meyer wavelet function in the periodic setting at fine resolution level.
Usage
fine_YM(j, j_max, deg)
Arguments
j |
Resolution level (positive integer) |
j_max |
Maximum resolution level (positive integer) |
deg |
Degree of Meyer wavelet (1,2,3) |
Value
Fourier transform of the Meyer wavelet function at resolution level $j$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
fine_YM(9,10,3)
Make Doppler signal
Description
Generate Doppler signal.
Usage
make.doppler(n)
Arguments
n |
sample size |
Value
a vector of size $n$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plot(seq(0,1,le=1000),make.doppler(1000),type='l')
Make LIDAR signal
Description
Generate artificial LIDAR signal.
Usage
make.lidar(n)
Arguments
n |
sample size |
Value
a vector of size $n$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plot(seq(0,1,le=1000),make.lidar(1000),type='l')
Returns maxiset threshold
Description
Returns maxiset threshold for specified resolution levels.
Usage
maxithresh(data, g, L = 2, F = (log2(length(data)) - 1), eta = sqrt(6))
Arguments
data |
data to be processed |
g |
sample of g |
L |
Lowest resolution level |
F |
Finest resolution level |
eta |
constant describing tail of noise distribution |
Value
Returns maxiset threshold for coarse resolution level equal to L, and wavelet resolution levels L,...,F.
Author(s)
Marc Raimondo
References
Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004), 'Wavelet deconvolution in a periodic setting', Journal of the Royal Statistical Society, Series B 66(3),~547–573. with discussion pp.627-652.
Raimondo, M. and Stewart, M. (2006), ‘The WaveD Transform in R’, preprint, School and Mathematics and Statistics, University of Sydney.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
maxithresh(data$lidar.noisy,data$g,L=3,F=7)
Create Multi-resolution Plot
Description
Depicts wavelet coefficients according to time and resolution level.
Usage
multires(wcUntrimmed,lowest=3,coarse=3,highestplot=NULL,descending=FALSE,sc = 1)
Arguments
wcUntrimmed |
Vector of wavelet coefficients; must be of dyadic length. |
lowest |
Lowest resolution level. |
coarse |
Coarse resolution level; same as lowest. |
highestplot |
Highest resolution level. |
descending |
logical indicating whether resolutions are depicted with highest at the top of the plot (FALSE, the default), or at the bottom (TRUE). |
sc |
graphical scaling parameter of heights of lines representing wavelet coefficients; default is 1. |
Value
Depicts wavelet coefficients according to time (horizontal axis) and resolution level lowest, lowest+1,...,highestplot.
Author(s)
Marc Raimondo and Michael Stewart
References
Donoho, D. and Raimondo, M. (2004), ‘Translation invariant deconvolution in a periodic setting’, The International Journal of Wavelets, Multiresolution and Information Processing 14(1),~415–423.
Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004), 'Wavelet deconvolution in a periodic setting', Journal of the Royal Statistical Society, Series B 66(3),~547–573. with discussion pp.627-652.
Raimondo, M. and Stewart, M. (2006), ‘The WaveD Transform in R’, preprint, School and Mathematics and Statistics, University of Sydney.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
lidar.w=FWaveD(data$lidar.blur,data$g,F=7)
multires(lidar.w,lo=3,hi=7)
Meyer scaling function (Fourier domain).
Description
Compute Meyer Scaling function in the Fourier domain.
Usage
phyHAT(x, deg)
Arguments
x |
Abscissa (frequency) values for evaluation. |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3 |
Value
Meyer scaling function at frequency $x$.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plot(seq(-2,2,le=1000),abs(phyHAT(seq(-2,2,le=1000),3)),type='l')
Plot wvd objects
Description
Plot wvd objects
Usage
## S3 method for class 'wvd'
plot(x,...)
Arguments
x |
A list created by the WaveD function |
Value
Graphical output only.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
doppler.wvd=WaveD(data$doppler.noisy,data$g)
plot(doppler.wvd)
Plot spectrum
Description
This function plots the log spectrum and the optimal noise threshold which is used in WaveD fit.
Usage
plotspec(g, s)
Arguments
g |
Sample of g or g + (Gaussian noise). |
s |
Noise standard deviation. |
Value
Graphical output only.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plotspec(sin(2*pi*seq(0,1,le=1024)),0.01)
Projection onto $F_j$
Description
Compute the projection of $f$ onto $F_j$ (fine resolution)).
Usage
projFj(beta, n, deg)
Arguments
beta |
vector of wavelet coefficients of $f$ |
n |
sample size |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3. |
Value
the projection of $f$ onto $F_j$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plot(projFj(rnorm(1024),1024,3))
Projection onto $V_j$
Description
Compute the projection of $f$ onto $V_j$.
Usage
projVj(beta, n, deg)
Arguments
beta |
vector of wavelet coefficients of $f$ |
n |
sample size |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3. |
Value
the projection of $f$ onto $V_j$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plot(projVj(rnorm(512),1024,3))
Projection onto $W_j$
Description
Compute the projection of $f$ onto $W_j$ (details).
Usage
projWj(beta, n, deg)
Arguments
beta |
vector of wavelet coefficients of $f$ |
n |
sample size |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3. |
Value
the projection of $f$ onto $W_j$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plot(projWj(rnorm(512),1024,3))
Meyer wavelet function (Fourier domain).
Description
Compute Meyer wavelet function in the Fourier domain.
Usage
psyHAT(x, deg)
Arguments
x |
Abscissa (frequency) values for evaluation. |
deg |
The degree of the Meyer wavelet, either 1, 2, or 3 |
Value
Meyer scaling function at frequency $x$.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
plot(seq(-2,2,le=1000),abs(psyHAT(seq(-2,2,le=1000),3)),type='l')
Rotate matrix 90 degrees
Description
Rotate matrix 90 degrees
Usage
rot90(x)
Arguments
x |
A square matrix. |
Value
90 degrees rotation of $x$.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), ‘The WaveD Transform in R’, Journal of Statistical Software.
See Also
Examples
rot90(1:5)
Estimates standard deviation of noise
Description
Estimates standard deviation of noise in the nonparametric signal+(Gaussian noise) regression model. Input vector must be of dyadic length and assumes a regular grid.
Usage
scale(yobs, L=3, deg=3)
Arguments
yobs |
a vector of dyadic length representing signal+(Gaussian noise) |
L |
lowest resolution level |
deg |
degree of Meyer wavelet |
Value
Returns a positive estimate of the standard deviation of noise in the nonparametric regression model.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2006), ‘The WaveD Transform in R’, preprint, School and Mathematics and Statistics, University of Sydney.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
scale(data$lidar.noisy)
Meyer scaling function, Fourier domain.
Description
Generate Fourier transform of the Meyer scaling function in the periodic setting at fine resolution level.
Usage
scaling_YM(j, j_max, deg)
Arguments
j |
Resolution level (positive integer) |
j_max |
Maximum resolution level (positive integer) |
deg |
Degree of Meyer wavelet (1,2,3) |
Value
Fourier transform of the Meyer scaling function at resolution level $j$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
scaling_YM(9,10,3)
Plot spectrum
Description
This function plots the log spectrum of $g$.
Usage
speczoom(y_test, fenetre)
Arguments
y_test |
Sample vector of $g$. |
fenetre |
Window (a positive integer). |
Value
log-spectrum of $g$.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
speczoom(sin(2*pi*seq(0,1,le=1024)),200)
Optimal stoping time
Description
Compute the stoping time in the Fourier domain using noisy egein values.
Usage
stoptime(g, sigma)
Arguments
g |
A sample of the convolution kernel $g$. |
sigma |
Noise standard deviation. |
Value
M |
estimate of optimal Fourier frequency. |
j1 |
estimate of optimal resolution level. |
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
stoptime(log(abs(sin(2*pi*seq(0,1,le=1024)))),1)
Summary of wvd objects
Description
Provide a summary of wvd objects
Usage
## S3 method for class 'wvd'
summary(object,...)
Arguments
object |
A list created by the WaveD function |
Value
Text output only.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
doppler.wvd=WaveD(data$doppler.noisy,data$g)
summary(doppler.wvd)
Show threshold effects
Description
Provide a summary of threshold effects in WaveD fit.
Usage
threshsum(w.res, L = 3, F = (log2(length(w.res)) - 1))
Arguments
w.res |
A vector of wavelet coefficients |
L |
Low resolution level |
F |
Fine resolution level |
Value
A vector of length F-L+1, with ONES and ZEROS. The ZEROS show that no coefficient remains at the corresponding resolution level.
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
library(waved)
data=waved.example(TRUE,FALSE)
doppler.wvd=WaveD(data$doppler.noisy,data$g)
threshsum(doppler.wvd$w,3,8)
WaveD examples
Description
Generate data sets and figures to illustrate the WaveD function.
Usage
waved.example(pr = TRUE, gr=TRUE)
Arguments
pr |
If pr=TRUE (default) uses the same parameters as in the reference paper below. If pr=FALSE user level parameter specifications. |
gr |
If gr=TRUE (default) text and graphical displays are provided. |
Value
lidar.noisy |
Noisy blurred LIDAR signal (Gaussian noise) |
lidar.noisyT |
Noisy blurred LIDAR signal (Student $t_2$ noise) |
doppler.noisy |
Noisy blurred Doppler signal (Gaussian noise) |
doppler.noisyT |
Noisy blurred Doppler signal (Student $t_2$ noise) |
lidar.blur |
Blurred LIDAR signal |
doppler.blur |
Blurred Doppler signal |
t |
Rime vector scaled to [0,1] |
n |
Sample size |
g |
Convolution kernel |
lidar |
LIDAR signal |
doppler |
Doppler signal. |
seed |
Used in set.seed |
sigma |
Noise standard deviation. |
g.noisy |
Convolution kernel plus Gaussian noise. |
g.noisyT |
Convolution kernel plus Student $t_2$ noise. |
dip |
Degree of Ill-posedness. |
k.scale |
Scale of the convolution kernel |
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
data=waved.example(TRUE,FALSE)
Meyer wavelet function, Fourier domain.
Description
Generate Fourier transform of the Meyer scaling function in the periodic setting at fine resolution level.
Usage
wavelet_YM(j, j_max, deg)
Arguments
j |
Resolution level (positive integer) |
j_max |
Maximum resolution level (positive integer) |
deg |
Degree of Meyer wavelet (1,2,3) |
Value
Fourier transform of the Meyer wavelet function at resolution level $j$
Author(s)
Marc Raimondo
References
Raimondo, M. and Stewart, M. (2007), "The WaveD Transform in R", Journal of Statistical Software.
See Also
Examples
wavelet_YM(5,10,3)