## ----echo = FALSE------------------------------------------------------------- knitr::opts_chunk$set(comment = '') ## ----eval = FALSE------------------------------------------------------------- # install.packages('vsgoftest') ## ----echo = TRUE, eval = FALSE------------------------------------------------ # #Package devtools must be installed # devtools::install_github('pregnault/vsgoftest') ## ----------------------------------------------------------------------------- library('vsgoftest') set.seed(2) #set seed of PRNG samp <- rnorm(n = 100, mean = 0, sd = 1) #sampling from normal distribution entropy.estimate(x = samp, window = 8) #estimating entropy with window = 8 log(2*pi*exp(1))/2 #the exact value of entropy ## ----------------------------------------------------------------------------- sapply(1:10, function(w) entropy.estimate(x = samp, window =w)) ## ----------------------------------------------------------------------------- n <- 100 #sample size V <- sapply(1:(n/2 - 1), function(w) entropy.estimate(x = samp, window =w)) which.max(V) #Choose window that maximizes entropy ## ----------------------------------------------------------------------------- set.seed(5) n <- 100 #Sample size samp <- rpareto(n, c = 1, mu = 2) #sampling from Pareto distribution entropy.estimate(x = samp, window = 3) -log(2) + 3/2 #Exact value of entropy ## ----------------------------------------------------------------------------- set.seed(5) samp <- rnorm(50,2,3) vs.test(x = samp, densfun = 'dlaplace') ## ----------------------------------------------------------------------------- set.seed(4) vs.test(x = samp, densfun = 'dnorm') ## ----------------------------------------------------------------------------- set.seed(26) vs.test(x = samp, densfun = 'dnorm', param = c(2,3)) ## ----echo = TRUE, eval = TRUE, error = TRUE----------------------------------- set.seed(2) samp <- rnorm(50, -2, 1) vs.test(samp, densfun = 'dnorm', param = -2) ## ----------------------------------------------------------------------------- set.seed(1) samp <- rweibull(200, shape = 1.05, scale = 1) vs.test(samp, densfun = 'dexp') ## ----------------------------------------------------------------------------- set.seed(2) vs.test(samp, densfun = 'dexp', simulate.p.value = TRUE, B = 10000) ## ----------------------------------------------------------------------------- set.seed(63) vs.test(samp, densfun = 'dexp', delta = 5/30) ## ----------------------------------------------------------------------------- set.seed(8) samp <- rexp(30, rate = 3) vs.test(x = samp, densfun = "dlnorm") ## ----------------------------------------------------------------------------- vs.test(x = samp, densfun = "dlnorm", extend = TRUE) ## ----echo = TRUE, eval = TRUE, error = TRUE----------------------------------- samp <- c(samp, rep(4,3)) #add ties in the previous sample vs.test(x = samp, densfun = "dexp") ## ----------------------------------------------------------------------------- vs.test(x = samp, densfun = "dexp", extend = TRUE) ## ----echo = TRUE, eval = TRUE, error = TRUE----------------------------------- set.seed(84) ech <- rpareto(20, mu = 1/2, c = 1) vs.test(x = ech, densfun = 'dpareto', param = c(1/2, 1)) ## ----------------------------------------------------------------------------- data(contaminants) set.seed(1) vs.test(x = aluminium2, densfun = 'dpareto') ## ----echo = FALSE------------------------------------------------------------- knitr::opts_chunk$set(warning = FALSE) ## ----------------------------------------------------------------------------- set.seed(1) vs.test(x = aluminium1, densfun = 'dlnorm') ## ----------------------------------------------------------------------------- set.seed(1) vs.test(x = aluminium2, densfun = 'dlnorm') ## ----------------------------------------------------------------------------- set.seed(1) vs.test(x = toluene, densfun = 'dlnorm', extend = TRUE, relax = TRUE) ## ----------------------------------------------------------------------------- set.seed(1) vs.test(x = log(toluene), densfun ='dnorm', extend = TRUE) ## ----------------------------------------------------------------------------- set.seed(1) vs.test(x = aluminium2, densfun = 'dpareto') ## ----------------------------------------------------------------------------- #Compute the MLE of parameters of Pareto dist. res.test <- vs.test(x = toluene, densfun = 'dpareto', extend = TRUE, relax = TRUE) #Test uniformity of transformed data set.seed(5) vs.test(x = ppareto(toluene, mu = res.test$estimate[1], c = res.test$estimate[2]), densfun ='dunif', param = c(0,1), extend = TRUE)