## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, tidy.opts=list(width.cutoff=80), tidy=TRUE, comment=NA) ## ----message = FALSE---------------------------------------------------------- require(vcpen) ## ---- loaddat----------------------------------------------------------------- data(vcexample) ls() head(dose) head(doseinfo) response[1:10] ## ---- kerns------------------------------------------------------------------- nvc <- 1+length(unique(doseinfo[,2])) id <- 1:nrow(dose) ## vcs for genetic kernel matrices Kerns <- vector("list", length=nvc) for(i in 1:(nvc-1)){ ## below uses kernel_linear, but users can replace this with their choice of function to ## create other types of kernel matrices. Kerns[[i]] <- kernel_linear(dose[,grep(i, doseinfo[,2])]) rownames(Kerns[[i]]) <- id colnames(Kerns[[i]]) <- id } ## vc for residual variance requires identity matrix Kerns[[nvc]] <- diag(nrow(dose)) rownames(Kerns[[nvc]]) <- id colnames(Kerns[[nvc]]) <- id ## ---- runvcpen6--------------------------------------------------------------- fit <- vcpen(response, covmat, Kerns) summary(fit) ## ---- runvcpen1--------------------------------------------------------------- fit.frac1 <- vcpen(response, covmat, Kerns, frac1 = .1) summary(fit.frac1) ## ---- vcinit------------------------------------------------------------------ vcinit <- minque(response, covmat, Kerns, n.iter=2) names(vcinit) vcinit$beta vcinit$vc