## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.height = 4, fig.align = "center" ) ## ----load-package------------------------------------------------------------- library(valytics) ## ----ate-basic---------------------------------------------------------------- # Example: Glucose # CV_I = 5.6%, CV_G = 7.5% (illustrative values) ate_glucose <- ate_from_bv(cvi = 5.6, cvg = 7.5) ate_glucose ## ----ate-summary-------------------------------------------------------------- summary(ate_glucose) ## ----ate-levels--------------------------------------------------------------- # Optimal (most stringent) ate_optimal <- ate_from_bv(cvi = 5.6, cvg = 7.5, level = "optimal") ate_optimal$specifications$tea # Minimum (least stringent) ate_minimum <- ate_from_bv(cvi = 5.6, cvg = 7.5, level = "minimum") ate_minimum$specifications$tea ## ----ate-cvi-only------------------------------------------------------------- ate_cv_only <- ate_from_bv(cvi = 5.6) ate_cv_only ## ----sigma-basic-------------------------------------------------------------- # Assume observed: bias = 1.5%, CV = 2.5% # Using TEa from biological variation sm <- sigma_metric( bias = 1.5, cv = 2.5, tea = ate_glucose$specifications$tea ) sm ## ----sigma-summary------------------------------------------------------------ summary(sm) ## ----assess-basic------------------------------------------------------------- assess <- ate_assessment( bias = 1.5, cv = 2.5, tea = ate_glucose$specifications$tea ) assess ## ----assess-full-------------------------------------------------------------- assess_full <- ate_assessment( bias = 1.5, cv = 2.5, tea = ate_glucose$specifications$tea, allowable_bias = ate_glucose$specifications$allowable_bias, allowable_cv = ate_glucose$specifications$allowable_cv ) summary(assess_full) ## ----assess-fail-------------------------------------------------------------- # A method with poor performance assess_poor <- ate_assessment( bias = 4.0, cv = 5.0, tea = ate_glucose$specifications$tea, allowable_bias = ate_glucose$specifications$allowable_bias, allowable_cv = ate_glucose$specifications$allowable_cv ) summary(assess_poor) ## ----workflow----------------------------------------------------------------- # Step 1: Define quality goals from biological variation specs <- ate_from_bv(cvi = 5.6, cvg = 7.5, level = "desirable") cat("Quality Specifications:\n") cat(sprintf(" Allowable CV: %.2f%%\n", specs$specifications$allowable_cv)) cat(sprintf(" Allowable Bias: %.2f%%\n", specs$specifications$allowable_bias)) cat(sprintf(" TEa: %.2f%%\n\n", specs$specifications$tea)) # Step 2: Assume we measured method performance # (In practice, from validation studies) observed_bias <- 1.8 observed_cv <- 2.2 # Step 3: Calculate sigma metric sm <- sigma_metric(observed_bias, observed_cv, specs$specifications$tea) cat(sprintf("Sigma Metric: %.2f (%s)\n\n", sm$sigma, sm$interpretation$category)) # Step 4: Full assessment assessment <- ate_assessment( bias = observed_bias, cv = observed_cv, tea = specs$specifications$tea, allowable_bias = specs$specifications$allowable_bias, allowable_cv = specs$specifications$allowable_cv ) # Step 5: Decision if (assessment$assessment$overall) { cat("DECISION: Method acceptable for clinical use\n") } else { cat("DECISION: Method requires improvement\n") } ## ----other-sources------------------------------------------------------------ # Using a CLIA-based TEa for glucose (example: ±6 mg/dL or ±10%) # For a sample at 100 mg/dL, 10% = 10 mg/dL sm_clia <- sigma_metric(bias = 2, cv = 3, tea = 10) sm_clia