## ---- echo = FALSE------------------------------------------------------------ library(knitr) opts_chunk$set(fig.width = 8, fig.height = 4) ## ----packages----------------------------------------------------------------- library(treeDA) library(ggplot2) library(phyloseq) library(adaptiveGPCA) library(Matrix) data(AntibioticPhyloseq) theme_set(theme_bw()) ## ----treeda-type-------------------------------------------------------------- out.treeda = treeda(response = sample_data(AntibioticPhyloseq)$type, predictors = otu_table(AntibioticPhyloseq), tree = phy_tree(AntibioticPhyloseq), p = 15) ## ----treeda-type-print-------------------------------------------------------- out.treeda ## ----treeda-type-sample-plot-------------------------------------------------- ggplot(data.frame(sample_data(AntibioticPhyloseq), projections = out.treeda$projections)) + geom_point(aes(x = ind, y = projections, color = type)) ## ----treeda-type-coef-plot---------------------------------------------------- plot_coefficients(out.treeda) ## ----treeda-ind--------------------------------------------------------------- out.treeda.ind = treeda(response = sample_data(AntibioticPhyloseq)$ind, predictors = otu_table(AntibioticPhyloseq), tree = phy_tree(AntibioticPhyloseq), p = 15) out.treeda.ind ## ----tereda-ind-coef-plot----------------------------------------------------- plot_coefficients(out.treeda.ind) ## ----treeda-ind-cv------------------------------------------------------------ set.seed(0) out.treedacv = treedacv(response = sample_data(AntibioticPhyloseq)$type, predictors = otu_table(AntibioticPhyloseq), tree = phy_tree(AntibioticPhyloseq), folds = 4, pvec = 1:15) out.treedacv ## ----treeda-ind-plot-cv, fig.width = 5, fig.height = 3------------------------ plot(out.treedacv) ## ----treeda-ind-fit-2--------------------------------------------------------- out.treeda.11 = treeda(response = sample_data(AntibioticPhyloseq)$type, predictors = otu_table(AntibioticPhyloseq), tree = phy_tree(AntibioticPhyloseq), p = 11) out.treeda.11 ## ----treeda-ind-plot-coef----------------------------------------------------- plot_coefficients(out.treeda.11) ## ----taxa-examine------------------------------------------------------------- coef = as.vector(out.treeda.11$leafCoefficients$beta) taxa.max = which(coef == max(coef)) length(taxa.max) unique(tax_table(AntibioticPhyloseq)[taxa.max,])