## ----------------------------------------------------------------------------- library(knitr) opts_chunk$set( warning = FALSE, message = FALSE, eval = requireNamespace("wordcloud", quietly = TRUE) && requireNamespace("ggplot2", quietly = TRUE) ) ## ----------------------------------------------------------------------------- library(ggplot2) theme_set(theme_light()) ## ----------------------------------------------------------------------------- library(janeaustenr) library(dplyr) library(stringr) original_books <- austen_books() %>% group_by(book) %>% mutate(line = row_number(), chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]", ignore_case = TRUE)))) %>% ungroup() original_books ## ----------------------------------------------------------------------------- library(tidytext) tidy_books <- original_books %>% unnest_tokens(output = word, input = text) tidy_books ## ----------------------------------------------------------------------------- cleaned_books <- tidy_books %>% anti_join(get_stopwords()) ## ----------------------------------------------------------------------------- cleaned_books %>% count(word, sort = TRUE) ## ----------------------------------------------------------------------------- positive <- get_sentiments("bing") %>% filter(sentiment == "positive") tidy_books %>% filter(book == "Emma") %>% semi_join(positive) %>% count(word, sort = TRUE) ## ----------------------------------------------------------------------------- library(tidyr) bing <- get_sentiments("bing") janeaustensentiment <- tidy_books %>% inner_join(bing, relationship = "many-to-many") %>% count(book, index = line %/% 80, sentiment) %>% pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>% mutate(sentiment = positive - negative) ## ----------------------------------------------------------------------------- library(ggplot2) ggplot(janeaustensentiment, aes(index, sentiment, fill = book)) + geom_bar(stat = "identity", show.legend = FALSE) + facet_wrap(vars(book), ncol = 2, scales = "free_x") ## ----------------------------------------------------------------------------- bing_word_counts <- tidy_books %>% inner_join(bing, relationship = "many-to-many") %>% count(word, sentiment, sort = TRUE) bing_word_counts ## ----------------------------------------------------------------------------- bing_word_counts %>% group_by(sentiment) %>% slice_max(n, n = 10) %>% mutate(word = reorder(word, n)) %>% ggplot(aes(n, word, fill = sentiment)) + geom_col(show.legend = FALSE) + facet_wrap(vars(sentiment), scales = "free_y") + labs(x = "Contribution to sentiment", y = NULL) ## ----------------------------------------------------------------------------- library(wordcloud) cleaned_books %>% count(word) %>% with(wordcloud(word, n, max.words = 100)) ## ----------------------------------------------------------------------------- library(reshape2) tidy_books %>% inner_join(bing) %>% count(word, sentiment, sort = TRUE) %>% acast(word ~ sentiment, value.var = "n", fill = 0) %>% comparison.cloud(colors = c("#F8766D", "#00BFC4"), max.words = 100) ## ----------------------------------------------------------------------------- PandP_sentences <- tibble(text = prideprejudice) %>% unnest_tokens(output = sentence, input = text, token = "sentences") ## ----------------------------------------------------------------------------- PandP_sentences$sentence[2] ## ----------------------------------------------------------------------------- austen_chapters <- austen_books() %>% group_by(book) %>% unnest_tokens(chapter, text, token = "regex", pattern = "Chapter|CHAPTER [\\dIVXLC]") %>% ungroup() austen_chapters %>% group_by(book) %>% summarise(chapters = n()) ## ----------------------------------------------------------------------------- bingnegative <- get_sentiments("bing") %>% filter(sentiment == "negative") wordcounts <- tidy_books %>% group_by(book, chapter) %>% summarize(words = n()) tidy_books %>% semi_join(bingnegative) %>% group_by(book, chapter) %>% summarize(negativewords = n()) %>% left_join(wordcounts, by = c("book", "chapter")) %>% mutate(ratio = negativewords/words) %>% filter(chapter != 0) %>% slice_max(ratio, n = 1)