## ---- echo = FALSE------------------------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval = FALSE------------------------------------------------------------ # install.packages("tidyLPA") ## ----gh-installation, eval = FALSE-------------------------------------------- # install.packages("devtools") # devtools::install_github("data-edu/tidyLPA") ## ---- message = F------------------------------------------------------------- library(tidyLPA) library(dplyr) ## ----------------------------------------------------------------------------- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% single_imputation() %>% estimate_profiles(3) ## ---- eval = FALSE------------------------------------------------------------ # pisaUSA15[1:100, ] %>% # select(broad_interest, enjoyment, self_efficacy) %>% # single_imputation() %>% # estimate_profiles(3, package = "MplusAutomation") ## ---- eval = TRUE------------------------------------------------------------- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% single_imputation() %>% scale() %>% estimate_profiles(3) %>% plot_profiles() ## ---- eval = TRUE------------------------------------------------------------- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% single_imputation() %>% estimate_profiles(1:3, variances = c("equal", "varying"), covariances = c("zero", "varying")) %>% compare_solutions(statistics = c("AIC", "BIC")) ## ---- eval = FALSE------------------------------------------------------------ # pisaUSA15[1:100, ] %>% # select(broad_interest, enjoyment, self_efficacy) %>% # single_imputation() %>% # estimate_profiles(3, # package = "mplus", # ANALYSIS = "starts = 100, 20;") ## ---- eval = FALSE------------------------------------------------------------ # pisaUSA15[1:100, ] %>% # select(broad_interest, enjoyment, self_efficacy) %>% # single_imputation() %>% # estimate_profiles(3, # prior = priorControl()) ## ---- eval = TRUE------------------------------------------------------------- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% estimate_profiles(3, variances = "varying", covariances = "varying") ## ---- eval = TRUE------------------------------------------------------------- m3 <- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% estimate_profiles(3) get_estimates(m3) ## ---- eval = TRUE------------------------------------------------------------- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% scale() %>% estimate_profiles(4) %>% plot_profiles() pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% poms() %>% estimate_profiles(4) %>% plot_profiles() ## ---- eval = TRUE------------------------------------------------------------- get_data(m3) ## ----------------------------------------------------------------------------- m4 <- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% single_imputation() %>% estimate_profiles(c(3, 4)) get_data(m4) ## ----------------------------------------------------------------------------- get_fit(m4)