## ----preliminaries, echo=FALSE, results="hide"-------------------------------- options(prompt = "R> ", continue = "+ ") options(prompt = " ", continue = " ") set.seed(123456789) knitr::opts_chunk$set(message = FALSE, warning = FALSE, fig.align = "center") library(textplot) ## ----eval=(require(udpipe, quietly = TRUE) && require(ggraph, quietly = TRUE) && require(ggplot2, quietly = TRUE) && require(igraph, quietly = TRUE)), fig.width=10, fig.height=5---- library(textplot) library(udpipe) library(ggraph) library(ggplot2) library(igraph) x <- udpipe("His speech about marshmallows in New York is utter bullshit", "english") plt <- textplot_dependencyparser(x, size = 4) plt ## ----eval=(require(udpipe, quietly = TRUE) && require(ggraph, quietly = TRUE) && require(ggplot2, quietly = TRUE) && require(igraph, quietly = TRUE)), fig.width=12, fig.height=6, out.width = '1\\textwidth', out.height = '0.5\\textwidth'---- x <- udpipe("UDPipe provides tokenization, tagging, lemmatization and dependency parsing of raw text", "english") plt <- textplot_dependencyparser(x, size = 4) plt ## ----eval=(require(BTM, quietly = TRUE) && require(ggplot2, quietly = TRUE) && require(ggraph, quietly = TRUE) && require(ggforce, quietly = TRUE) && require(concaveman, quietly = TRUE) && require(igraph, quietly = TRUE)), fig.width=8, fig.height=6, out.width = '\\textwidth'---- library(BTM) library(ggplot2) library(ggraph) library(ggforce) library(concaveman) library(igraph) data(example_btm, package = 'textplot') model <- example_btm plt <- plot(model, title = "BTM model", top_n = 5) plt ## ----eval=(require(BTM, quietly = TRUE) && require(ggplot2, quietly = TRUE) && require(ggraph, quietly = TRUE) && require(ggforce, quietly = TRUE) && require(concaveman, quietly = TRUE) && require(igraph, quietly = TRUE)), fig.width=8, fig.height=6---- plt <- plot(model, title = "Biterm topic model", subtitle = "Topics 2 to 8", which = 2:8, top_n = 7) plt ## ----eval=(require(data.table, quietly = TRUE) && require(udpipe, quietly = TRUE)), results="hide", fig.width=8, fig.height=6---- library(data.table) library(udpipe) ## Annotate text with parts of speech tags data("brussels_reviews", package = "udpipe") anno <- subset(brussels_reviews, language %in% "nl") anno <- data.frame(doc_id = anno$id, text = anno$feedback, stringsAsFactors = FALSE) anno <- udpipe(anno, "dutch", trace = 10) ## Get cooccurrences of nouns / adjectives and proper nouns biterms <- as.data.table(anno) biterms <- biterms[, cooccurrence(x = lemma, relevant = upos %in% c("NOUN", "PROPN", "ADJ"), skipgram = 2), by = list(doc_id)] ## ----eval=(require(BTM, quietly = TRUE) && require(ggplot2, quietly = TRUE) && require(ggraph, quietly = TRUE) && require(ggforce, quietly = TRUE) && require(concaveman, quietly = TRUE) && require(igraph, quietly = TRUE) && require(data.table, quietly = TRUE) && require(udpipe, quietly = TRUE)), results="hide", fig.width=8, fig.height=6---- library(BTM) library(ggplot2) library(ggraph) library(ggforce) library(concaveman) library(igraph) ## Build the BTM model set.seed(123456) x <- subset(anno, upos %in% c("NOUN", "PROPN", "ADJ")) x <- x[, c("doc_id", "lemma")] model <- BTM(x, k = 5, beta = 0.01, iter = 2000, background = TRUE, biterms = biterms, trace = 100) plt <- plot(model) plt ## ----eval=(require(BTM, quietly = TRUE) && require(ggplot2, quietly = TRUE) && require(ggraph, quietly = TRUE) && require(ggforce, quietly = TRUE) && require(concaveman, quietly = TRUE) && require(igraph, quietly = TRUE) && require(data.table, quietly = TRUE) && require(udpipe, quietly = TRUE)), fig.width=8, fig.height=8---- library(BTM) library(ggplot2) library(ggraph) library(ggforce) library(concaveman) library(igraph) library(data.table) library(udpipe) x <- merge(anno, anno, by.x = c("doc_id", "paragraph_id", "sentence_id", "head_token_id"), by.y = c("doc_id", "paragraph_id", "sentence_id", "token_id"), all.x = TRUE, all.y = FALSE, suffixes = c("", "_parent"), sort = FALSE) x <- subset(x, dep_rel %in% c("obj", "amod")) x$topic <- factor(x$dep_rel) topiclabels <- levels(x$topic) x$topic <- as.integer(x$topic) ## Construct biterms/terminology inputs to the plot biterms <- data.frame(term1 = x$lemma, term2 = x$lemma_parent, topic = x$topic, stringsAsFactors = FALSE) terminology <- document_term_frequencies(x, document = "topic", term = c("lemma", "lemma_parent")) terminology <- document_term_frequencies_statistics(terminology) terminology <- terminology[order(terminology$tf_idf, decreasing = TRUE), ] terminology <- terminology[, head(.SD, 50), by = list(topic = doc_id)] terminology <- data.frame(topic = terminology$topic, token = terminology$term, probability = 1, stringsAsFactors = FALSE) plt <- textplot_bitermclusters(terminology, biterms, labels = topiclabels, title = "Objects of verbs and adjectives-nouns", subtitle = "Top 50 by group") plt ## ----eval=(require(udpipe, quietly = TRUE)), fig.width=5.5, fig.height=5.5---- library(udpipe) data("brussels_reviews_anno", package = "udpipe") x <- subset(brussels_reviews_anno, xpos %in% "JJ") x <- sort(table(x$lemma)) plt <- textplot_bar(x, top = 20, panel = "Adjectives", xlab = "Frequency", col.panel = "lightblue", cextext = 0.75, addpct = TRUE, cexpct = 0.5) plt ## ----eval=(require(Rgraphviz, quietly = TRUE) && require(udpipe, quietly = TRUE) && require(data.table, quietly = TRUE) && require(graph, quietly = TRUE)), fig.width=5, fig.height=5---- library(graph) library(Rgraphviz) library(udpipe) dtm <- subset(anno, upos %in% "ADJ") dtm <- document_term_frequencies(dtm, document = "doc_id", term = "lemma") dtm <- document_term_matrix(dtm) dtm <- dtm_remove_lowfreq(dtm, minfreq = 5) textplot_correlation_lines(dtm, top_n = 25, threshold = 0.01, lwd = 5, label = TRUE) ## ----eval=(require(udpipe, quietly = TRUE) && require(data.table, quietly = TRUE) && require(qgraph, quietly = TRUE) && require(glasso, quietly = TRUE)), fig.width=6, fig.height=6---- library(glasso) library(qgraph) library(udpipe) dtm <- subset(anno, upos %in% "NOUN") dtm <- document_term_frequencies(dtm, document = "doc_id", term = "token") dtm <- document_term_matrix(dtm) dtm <- dtm_remove_lowfreq(dtm, minfreq = 20) dtm <- dtm_remove_tfidf(dtm, top = 100) term_correlations <- dtm_cor(dtm) textplot_correlation_glasso(term_correlations, exclude_zero = TRUE) ## ----eval=(require(udpipe, quietly = TRUE) && require(igraph, quietly = TRUE) && require(ggraph, quietly = TRUE) && require(ggplot2, quietly = TRUE)), fig.width=6, fig.height=6, out.width = '0.75\\textwidth', out.height = '0.75\\textwidth'---- library(udpipe) library(igraph) library(ggraph) library(ggplot2) data(brussels_reviews_anno, package = 'udpipe') x <- subset(brussels_reviews_anno, xpos %in% "JJ" & language %in% "fr") x <- cooccurrence(x, group = "doc_id", term = "lemma") plt <- textplot_cooccurrence(x, title = "Adjective co-occurrences", top_n = 25) plt ## ----eval=(require(udpipe, quietly = TRUE) && require(igraph, quietly = TRUE) && require(ggraph, quietly = TRUE) && require(ggplot2, quietly = TRUE) && require(data.table, quietly = TRUE)), fig.width=8, fig.height=6, out.width = '0.8\\textwidth', out.height = '0.6\\textwidth'---- library(udpipe) library(igraph) library(ggraph) library(ggplot2) library(data.table) biterms <- merge(anno, anno, by.x = c("doc_id", "paragraph_id", "sentence_id", "head_token_id"), by.y = c("doc_id", "paragraph_id", "sentence_id", "token_id"), all.x = TRUE, all.y = FALSE, suffixes = c("", "_parent"), sort = FALSE) biterms <- setDT(biterms) biterms <- subset(biterms, dep_rel %in% c("obj", "amod")) biterms <- biterms[, list(cooc = .N), by = list(term1 = lemma, term2 = lemma_parent)] plt <- textplot_cooccurrence(biterms, title = "Objects of verbs + Adjectives-nouns", top_n = 75, vertex_color = "orange", edge_color = "black", fontface = "bold") plt ## ----eval=(require(uwot, quietly = TRUE) && require(ggplot2, quietly = TRUE) && require(ggrepel, quietly = TRUE) && require(ggalt, quietly = TRUE) ), fig.width=9, fig.height=7, out.width = '0.9\\textwidth', out.height = '0.7\\textwidth'---- library(uwot) set.seed(1234) ## Put embeddings in lower-dimensional space (2D) data(example_embedding, package = "textplot") embed.2d <- umap(example_embedding, n_components = 2, metric = "cosine", n_neighbors = 15, fast_sgd = TRUE, n_threads = 2, verbose = FALSE) embed.2d <- data.frame(term = rownames(example_embedding), x = embed.2d[, 1], y = embed.2d[, 2], stringsAsFactors = FALSE) head(embed.2d, n = 5) ## Get a dataset with words assigned to each cluster with a certain probability weight data(example_embedding_clusters, package = "textplot") terminology <- merge(example_embedding_clusters, embed.2d, by = "term", sort = FALSE) terminology <- subset(terminology, rank <= 7 & cluster %in% c(1, 3, 4, 10, 15, 19, 17)) head(terminology, n = 10) ## Plot the relevant embeddings library(ggplot2) library(ggrepel) library(ggalt) plt <- textplot_embedding_2d(terminology, encircle = TRUE, points = TRUE, title = "Embedding Topic Model clusters", subtitle = "embedded in 2D using UMAP") plt