## ----setup, include=FALSE--------------------------------- library("knitr") ### Set global chunk options opts_chunk$set(eval=TRUE, ## text results echo=TRUE, results=c('markup', 'asis', 'hold', 'hide')[1], collapse=FALSE, warning=TRUE, message=TRUE, error=TRUE, split=FALSE, include=TRUE, strip.white=TRUE, ## code decoration tidy=FALSE, prompt=FALSE, comment='##', highlight=TRUE, size='normalsize', background=c('#F7F7F7', colors()[479], c(0.1, 0.2, 0.3))[1], ## cache cache=FALSE, ## plots fig.path=c('figure', 'figure/minimal-')[1], fig.keep=c('high', 'none', 'all', 'first', 'last')[1], fig.align=c('center', 'left', 'right', 'default')[1], fig.show=c('hold', 'asis', 'animate', 'hide')[1], dev=c('pdf', 'png', 'tikz')[2], fig.width=7, fig.height=7, #inches fig.env=c('figure', 'marginfigure')[1], fig.pos=c('', 'h', 't', 'b', 'p', 'H')[3]) ### Set R options options(formatR.arrow=TRUE, width=60) ## ----p2--------------------------------------------------- data("kidney", package="KMsurv") t1 <- ten(survfit(Surv(time, delta) ~ type, data=kidney)) autoplot(t1) ## ----p3--------------------------------------------------- print(autoplot(t1, type="fill", survLineSize=2, jitter="all"), tabHeight=0.35) ## ----p4--------------------------------------------------- autoplot(t1, timeTicks="months", type="CI", jitter="all", legLabs=c("surgical", "percutaneous"), title="Time to infection following catheter placement \n by type of catheter, for dialysis patients", titleSize=10, censSize=2)$plot ## ----p5--------------------------------------------------- str(a1 <- autoplot(t1), max.level=1) ## check the output is what we want a1$plot + ggplot2::scale_y_continuous(limits=c(0.8, 1), name="Survival") ## this is one simple way a1 <- autoplot(t1) suppressMessages(a1$plot <- a1$plot + ggplot2::scale_y_continuous(limits=c(0.8, 1), name="Survival")) a1 ## or we can assign them as follows a1 <- autoplot(t1) ls(a1$plot$scales$scales[[3]]$super$super) is.environment(a1$plot$scales$scales[[3]]$super$super$limits) is.null(a1$plot$scales$scales[[3]]$super$super$limits) a1$plot$scales$scales[[3]]$super$super$limits <- c(0.8, 1) a1 ## ----p6--------------------------------------------------- data("bmt", package="KMsurv") b1 <- ten(Surv(time=t2, event=d3) ~ group, data=bmt) autoplot(b1) autoplot(b1, legOrd=c(1, 3, 2)) ## ----p7--------------------------------------------------- autoplot(b1, legOrd=c(3, 2, 1), legLabs=letters[1:3]) ## ----p8--------------------------------------------------- a2 <- autoplot(b1) ## ensure this is what we want a2$plot + ggplot2::theme(legend.position=c(0.75, 0.75)) a2$plot <- a2$plot + ggplot2::theme(legend.position=c(0.75, 0.75)) a2 ## ----p9--------------------------------------------------- t2 <- ten(survfit(Surv(time=time, event=delta) ~ 1, data=kidney)) autoplot(t2, legLabs="")$plot autoplot(t2, legend=FALSE) ## ----p10-------------------------------------------------- data("rectum.dat", package="km.ci") t3 <- ten(survfit(Surv(time, status) ~ 1, data=rectum.dat)) ## change confidence intervals to confidence bands ci(t3, how="nair", tL=1, tU=40) autoplot(t3, type="fill", alpha=0.6, legend=FALSE) ## ----p11-------------------------------------------------- ## manually changing the output t4 <- ten(survfit(Surv(time, delta) ~ type, data=kidney)) (a4 <- autoplot(t4, type="CI", alpha=0.8, survLineSize=2)$plot) ## change default colors suppressMessages(a4 + list( ggplot2::scale_color_manual(values=c("red", "blue")), ggplot2::scale_fill_manual(values=c("red", "blue")))) ## change limits of y-axis suppressMessages(a4 + ggplot2::scale_y_continuous(limits=c(0, 1))) ## ----p30-------------------------------------------------- data("pbc", package="survival") t1 <- ten(Surv(time, status==2) ~ trt + strata(edema), data=pbc, abbNames=FALSE) suppressWarnings(str(a1 <- autoplot(t1), max.level=1)) a1 ## ----p40-------------------------------------------------- data("pbc", package="survival") c1 <- survival::coxph(formula = Surv(time, status == 2) ~ age + edema + log(bili) + log(albumin) + log(protime), data = pbc) profLik(c1, col="red", devNew=FALSE)