\documentclass{article} \usepackage[utf8]{inputenc} \usepackage[french]{babel} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{xcolor} \setlength{\headheight}{-50pt} \setlength{\textheight}{708pt} \usepackage{pdfpages} %\VignetteIndexEntry{Estimation functions} \usepackage{Sweave} \begin{document} \SweaveOpts{concordance=TRUE} \input{estima-concordance} \thispagestyle{empty} The goal of the estima function is to estimate the coefficients of the two centered autologistic regression: \begin{align*} logit(p_{i,t}) &= X^{T}_{i,t}\beta + \beta_{past} \sum_{j \in N_{i}^{past}} \!\!\!Z_{j,t-1} + \rho_{1}\sum_{j \in N_{i}} Z^{**}_{j,t} + \rho_{2}Z_{i,t-1} \\ \Leftrightarrow \qquad p_{i,t} &= \frac{exp(X^{T}_{i,t}\beta + \beta_{past} \sum_{j \in N_{i}^{past}} \!\!\!Z_{j,t-1}+ \rho_{1}\sum_{j \in N_{i}} Z^{**}_{j,t} + \rho_{2}Z_{i,t-1})}{1+exp(X^{T}_{i,t}\beta + \beta_{past} \sum_{j \in N_{i}^{past}} \!\!\!Z_{j,t-1}+ \rho_{1}\sum_{j \in N_{i}} Z^{**}_{j,t}+ \rho_{2}Z_{i,t-1})} \end{align*} where $Z_{i,t}$ is a binary variable of parameter $p_{i,t}$, $N_{i}$ is the neighborhood of the site $i$ for the instantaneous spatial dependence, $N_{i}^{past}$ is the neighborhood of the site $i$ for the spatio-temporal dependence (spread of the illness) and $Z_{i,t-1}^{**}$ is given by: $$ Z^{**}_{i,t} = Z_{i,t} - \frac{exp(X^{T}_{i,t}\beta + \beta_{past} \sum_{j \in N_{i}^{past}} \!\!\!Z_{j,t-1}+ \rho_{2}Z_{i,t-1})}{1 + exp(X^{T}_{i,t}\beta + \beta_{past} \sum_{j \in N_{i}^{past}} \!\!\!Z_{j,t-1}+ \rho_{2}Z_{i,t-1})}. $$ \bigskip Estimation uses the pseudo-likelihood: $$ \mathcal{L}(\beta,\beta_{past},\rho_1,\rho_2) = \prod_{t = 1}^{T} \prod_{1 \leq i \leq n} (p_{i,t})^{z_{i,t}}(1-p_{i,t})^{1-z_{i,t}}. $$For more detail see Gegout-Petit, Guérin-Dubrana, Li, 2019. \bigskip The parameters of spatio-temporal dependence $\rho_1$, $\rho_2$, $\beta_{past}$ can be interpreted as practical biological processes: \begin{itemize} \item Instantaneous spatial dependence $\rho_{1}$. It quantifies the spatial autocorrelation between neighbours for the occurence of the event at each time $t$, \item Temporal dependence $\rho_{2}$. It quantifies the temporal dependence on the previous year's status, \item Coefficient $\beta_{past}$: it quantifies the spread of the illness coming from the previous year's status of the neighbours \end{itemize} The function "estima" estimates the parameters with different possibilities for $\beta_{past}$ and $\sum_{j \in N_{i}^{past}} \!\!\!Z_{j,t-1}$: \begin{itemize} \item[if "covpast = FALSE :] estimates the parameter $\beta = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \end{pmatrix}$ and $X^{T}_{i,t} = \begin{pmatrix} 1 \\ x_{i,t}^{1} \\ x_{i,t}^{2} \\ x_{i,t}^{3} \\ \end{pmatrix}$ where $x_{i,t}^{j} \forall j \in (1,2,3)$ is a spatio-temporal covariate. There can be 0, 1, 2 or 3 covariates. In this case, there is no regression on $\sum_{j \in N_{i}^{past}} \!\!\!Z_{j,t-1}$ ($\beta_{past}=0$). \item[if "covpast = TRUE" :] the function estimates the parameters $ \beta = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \end{pmatrix}$ and $\beta_{past}$. \end{itemize} \end{document}