%% LyX 2.0.2 created this file. For more info, see http://www.lyx.org/. %% Do not edit unless you really know what you are doing. \documentclass[11pt,english]{article} \usepackage{ae,aecompl} \renewcommand{\familydefault}{\rmdefault} \usepackage[T1]{fontenc} \usepackage[latin9]{inputenc} \usepackage{geometry} \geometry{verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in} \usepackage{babel} \usepackage{setspace} \onehalfspacing \usepackage[unicode=true] {hyperref} \makeatletter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands. %\VignetteIndexEntry{stargazer} \usepackage{dcolumn} \makeatother \begin{document} \title{stargazer: \\ beautiful \LaTeX{}, HTML and ASCII tables from R statistical output} \author{Marek Hlavac} \maketitle \section{Introduction} \emph{stargazer} is an R package that creates \LaTeX{} code, HTML code and ASCII text for well-formatted regression tables, with multiple models side-by-side, as well as for summary statistics tables, data frames, vectors and matrices. \section{Why Should I Use \emph{stargazer}?} Compared to available alternatives, \emph{stargazer} excels in at least three respects: its ease of use, the large number of models it supports, and its beautiful aesthetics. These advantages have made it the R-to-\LaTeX{} package of choice for many satisfied users at research and teaching institutions around the world. \subsection{Ease of Use} \emph{stargazer} was designed with the user's comfort in mind. The learning curve is very mild, and all arguments are very intuitive, so that even a beginning user of R or \LaTeX{} can quickly become familiar with the package's many capabilities. The package is intelligent, and tries to minimize the amount of effort the user has to put into adjusting argument values. If \emph{stargazer} is given a set of regression model objects, for instance, the package will create a side-by-side regression table. By contrast, if the user feeds it a data frame, \emph{stargazer} will know that the user is most likely looking for a summary statistics table or -- if the \emph{summary} argument is set to FALSE -- wants to output the content of the data frame.\newpage{} A quick reproducible example shows just how easy \emph{stargazer} is to use. You can install \emph{stargazer} from CRAN in the usual way:\\ \noindent \verb|install.packages("stargazer")| \newline \verb|library(stargazer)| \newline To create a summary statistics table from the \emph{`attitude'} data frame (which should be available with your default installation of R), simply run the following:\\ \noindent \verb|stargazer(attitude)| \begin{table}[!htbp] \centering \caption{} \label{} \begin{tabular}{@{\extracolsep{5pt}}lccccc} \\[-1.8ex]\hline \hline \\[-1.8ex] Statistic & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Max} \\ \hline \\[-1.8ex] rating & 30 & 64.633 & 12.173 & 40 & 85 \\ complaints & 30 & 66.600 & 13.315 & 37 & 90 \\ privileges & 30 & 53.133 & 12.235 & 30 & 83 \\ learning & 30 & 56.367 & 11.737 & 34 & 75 \\ raises & 30 & 64.633 & 10.397 & 43 & 88 \\ critical & 30 & 74.767 & 9.895 & 49 & 92 \\ advance & 30 & 42.933 & 10.289 & 25 & 72 \\ high.rating & 30 & 0.333 & 0.479 & 0 & 1 \\ \hline \\[-1.8ex] \normalsize \end{tabular} \end{table} To output the contents of the first four rows of some data frame, specify the part of the data frame you would like to see, and set the \emph{summary} option to FALSE:\\ \noindent \verb|stargazer(attitude[1:4,], summary=FALSE, rownames=FALSE)| \begin{table}[!htbp] \centering \caption{} \label{} \begin{tabular}{@{\extracolsep{5pt}} cccccccc} \\[-1.8ex]\hline \hline \\[-1.8ex] rating & complaints & privileges & learning & raises & critical & advance & high.rating \\ \hline \\[-1.8ex] $43$ & $51$ & $30$ & $39$ & $61$ & $92$ & $45$ & FALSE \\ $63$ & $64$ & $51$ & $54$ & $63$ & $73$ & $47$ & FALSE \\ $71$ & $70$ & $68$ & $69$ & $76$ & $86$ & $48$ & TRUE \\ $61$ & $63$ & $45$ & $47$ & $54$ & $84$ & $35$ & FALSE \\ \hline \\[-1.8ex] \normalsize \end{tabular} \end{table} Now, let us try to create a simple regression table with three side-by-side models -- two Ordinary Least Squares (OLS) and one probit regression model -- using the \emph{lm()} and \emph{glm()} functions. We can set the\emph{ align} argument to TRUE, so that coefficients in each column are aligned along the decimal point. \emph{Table 3} shows the result.\newpage{} \noindent \verb|## 2 OLS models| \newline \verb|linear.1 <- lm(rating ~ complaints + privileges + learning + raises + critical,| \newline \verb|data=attitude)| \newline \verb|linear.2 <- lm(rating ~ complaints + privileges + learning, data=attitude)| \newline \verb|## create an indicator dependent variable, and run a probit model| \newline \verb|attitude$high.rating <- (attitude$rating > 70)| \newline \verb|probit.model <- glm(high.rating ~ learning + critical + advance, data=attitude,| \newline \verb|family = binomial(link = "probit"))| \newline \newline \verb|stargazer(linear.1, linear.2, probit.model, title="Results", align=TRUE)|\begin{table}[htb] \centering \caption{Results} \label{} \footnotesize \begin{tabular}{@{\extracolsep{5pt}}lD{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} } \\[-1.8ex]\hline \hline \\[-1.8ex] & \multicolumn{3}{c}{\textit{Dependent variable:}} \\ \cline{2-4} \\[-1.8ex] & \multicolumn{2}{c}{rating} & \multicolumn{1}{c}{high.rating} \\ \\[-1.8ex] & \multicolumn{2}{c}{\textit{OLS}} & \multicolumn{1}{c}{\textit{probit}} \\ \\[-1.8ex] & \multicolumn{1}{c}{(1)} & \multicolumn{1}{c}{(2)} & \multicolumn{1}{c}{(3)}\\ \hline \\[-1.8ex] complaints & 0.692^{***} & 0.682^{***} & \\ & (0.149) & (0.129) & \\ & & & \\ privileges & -0.104 & -0.103 & \\ & (0.135) & (0.129) & \\ & & & \\ learning & 0.249 & 0.238^{*} & 0.164^{***} \\ & (0.160) & (0.139) & (0.053) \\ & & & \\ raises & -0.033 & & \\ & (0.202) & & \\ & & & \\ critical & 0.015 & & -0.001 \\ & (0.147) & & (0.044) \\ & & & \\ advance & & & -0.062 \\ & & & (0.042) \\ & & & \\ Constant & 11.011 & 11.258 & -7.476^{**} \\ & (11.704) & (7.318) & (3.570) \\ & & & \\ \hline \\[-1.8ex] Observations & \multicolumn{1}{c}{$30$} & \multicolumn{1}{c}{$30$} & \multicolumn{1}{c}{$30$} \\ R$^{2}$ & \multicolumn{1}{c}{$0.715$} & \multicolumn{1}{c}{$0.715$} & \\ Adjusted R$^{2}$ & \multicolumn{1}{c}{$0.656$} & \multicolumn{1}{c}{$0.682$} & \\ Log likelihood & & & \multicolumn{1}{c}{$-9.087$} \\ Akaike Inf. Crit. & \multicolumn{1}{c}{210.375} & \multicolumn{1}{c}{206.412} & \multicolumn{1}{c}{26.175} \\ Bayesian Inf. Crit. & \multicolumn{1}{c}{220.183} & \multicolumn{1}{c}{213.418} & \multicolumn{1}{c}{31.780} \\ Residual Std. Error & \multicolumn{1}{c}{$7.139 (df = 24)$} & \multicolumn{1}{c}{$6.863 (df = 26)$} & \\ F statistic & \multicolumn{1}{c}{$12.063^{***} (df = 5; 24)$} & \multicolumn{1}{c}{$21.743^{***} (df = 3; 26)$} & \\ \hline \hline \\[-1.8ex] \textit{Note:} & \multicolumn{3}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ \normalsize \end{tabular} \end{table} \newpage{} In \emph{Table 4}, we go a little bit further, and make some formatting and labeling adjustments. In particular, we remove all empty lines from the table (using \textit{no.space}), and use \emph{omit.stat} to leave out several statistics -- namely, the log-likelihood (``\emph{LL'}'), residual standard error (``\emph{ser}'') and the F-statistic (``\emph{f}''). Additionally, we label each of the dependent and independent variables with an easy-to-understand name. To do so, we use the \emph{dep.var.labels} and \emph{covariate.labels} arguments. The result is a complex, publication-quality \LaTeX{} table. The relevant command call looks like this: \noindent \newline \verb|stargazer(linear.1, linear.2, probit.model, title="Regression Results",| \newline \verb|align=TRUE, dep.var.labels=c("Overall Rating","High Rating"),| \newline \verb|covariate.labels=c("Handling of Complaints","No Special Privileges",| \newline \verb|"Opportunity to Learn","Performance-Based Raises","Too Critical","Advancement"),| \newline \verb|omit.stat=c("LL","ser","f"), no.space=TRUE)| \begin{table}[!htbp] \centering \caption{Regression Results} \label{} \begin{tabular}{@{\extracolsep{5pt}}lD{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} } \\[-1.8ex]\hline \hline \\[-1.8ex] & \multicolumn{3}{c}{\textit{Dependent variable:}} \\ \cline{2-4} \\[-1.8ex] & \multicolumn{2}{c}{Overall Rating} & \multicolumn{1}{c}{High Rating} \\ \\[-1.8ex] & \multicolumn{2}{c}{\textit{OLS}} & \multicolumn{1}{c}{\textit{probit}} \\ \\[-1.8ex] & \multicolumn{1}{c}{(1)} & \multicolumn{1}{c}{(2)} & \multicolumn{1}{c}{(3)}\\ \hline \\[-1.8ex] Handling of Complaints & 0.692^{***} & 0.682^{***} & \\ & (0.149) & (0.129) & \\ No Special Privileges & -0.104 & -0.103 & \\ & (0.135) & (0.129) & \\ Opportunity to Learn & 0.249 & 0.238^{*} & 0.164^{***} \\ & (0.160) & (0.139) & (0.053) \\ Performance-Based Raises & -0.033 & & \\ & (0.202) & & \\ Too Critical & 0.015 & & -0.001 \\ & (0.147) & & (0.044) \\ Advancement & & & -0.062 \\ & & & (0.042) \\ Constant & 11.011 & 11.258 & -7.476^{**} \\ & (11.704) & (7.318) & (3.570) \\ \hline \\[-1.8ex] Observations & \multicolumn{1}{c}{30} & \multicolumn{1}{c}{30} & \multicolumn{1}{c}{30} \\ R$^{2}$ & \multicolumn{1}{c}{0.715} & \multicolumn{1}{c}{0.715} & \\ Adjusted R$^{2}$ & \multicolumn{1}{c}{0.656} & \multicolumn{1}{c}{0.682} & \\ Akaike Inf. Crit. & \multicolumn{1}{c}{210.375} & \multicolumn{1}{c}{206.412} & \multicolumn{1}{c}{26.175} \\ Bayesian Inf. Crit. & \multicolumn{1}{c}{220.183} & \multicolumn{1}{c}{213.418} & \multicolumn{1}{c}{31.780} \\ \hline \hline \\[-1.8ex] \textit{Note:} & \multicolumn{3}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ \normalsize \end{tabular} \end{table} \newpage{}In \textit{Table 5}, we limit ourselves to the two linear models, and report 90 percent confidence intervals (using \textit{ci} and \textit{ci.level}) instead of standard errors. In addition, we report the coefficients and confidence intervals on the same row (using \textit{single.row}). \noindent \newline \verb|stargazer(linear.1, linear.2, title="Regression Results",| \newline \verb|dep.var.labels=c("Overall Rating","High Rating"),| \newline \verb|covariate.labels=c("Handling of Complaints","No Special Privileges",| \newline \verb|"Opportunity to Learn","Performance-Based Raises","Too Critical","Advancement"),| \newline \verb|omit.stat=c("LL","ser","f"), ci=TRUE, ci.level=0.90, single.row=TRUE)| \begin{table}[!htbp] \centering \caption{Regression Results} \label{} \begin{tabular}{@{\extracolsep{5pt}}lcc} \\[-1.8ex]\hline \hline \\[-1.8ex] & \multicolumn{2}{c}{\textit{Dependent variable:}} \\ \cline{2-3} \\[-1.8ex] & \multicolumn{2}{c}{Overall Rating} \\ \\[-1.8ex] & (1) & (2)\\ \hline \\[-1.8ex] Handling of Complaints & 0.692$^{***}$ (0.447, 0.937) & 0.682$^{***}$ (0.470, 0.894) \\ No Special Privileges & $-$0.104 ($-$0.325, 0.118) & $-$0.103 ($-$0.316, 0.109) \\ Opportunity to Learn & 0.249 ($-$0.013, 0.512) & 0.238$^{*}$ (0.009, 0.467) \\ Performance-Based Raises & $-$0.033 ($-$0.366, 0.299) & \\ Too Critical & 0.015 ($-$0.227, 0.258) & \\ Advancement & 11.011 ($-$8.240, 30.262) & 11.258 ($-$0.779, 23.296) \\ \hline \\[-1.8ex] Observations & 30 & 30 \\ R$^{2}$ & 0.715 & 0.715 \\ Adjusted R$^{2}$ & 0.656 & 0.682 \\ Akaike Inf. Crit. & 210.375 & 206.412 \\ Bayesian Inf. Crit. & 220.183 & 213.418 \\ \hline \hline \\[-1.8ex] \textit{Note:} & \multicolumn{2}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ \normalsize \end{tabular} \end{table} \newpage{}To produce ASCII text output, rather than \LaTeX{} code, we simply set the argument \textit{type} to \textit{``text''}: \noindent \newline \verb|stargazer(linear.1, linear.2, type="text", title="Regression Results",| \newline \verb|dep.var.labels=c("Overall Rating","High Rating"),| \newline \verb|covariate.labels=c("Handling of Complaints","No Special Privileges",| \newline \verb|"Opportunity to Learn","Performance-Based Raises","Too Critical","Advancement"),| \newline \verb|omit.stat=c("LL","ser","f"), ci=TRUE, ci.level=0.90, single.row=TRUE)| \newline \noindent\verb|Regression Results| \newline \verb|========================================================================|\newline \verb| Dependent variable: |\newline \verb| -----------------------------------------------|\newline \verb| Overall Rating |\newline \verb| (1) (2) |\newline \verb|------------------------------------------------------------------------|\newline \verb|Handling of Complaints 0.692*** (0.447, 0.937) 0.682*** (0.470, 0.894)|\newline \verb|No Special Privileges -0.104 (-0.325, 0.118) -0.103 (-0.316, 0.109) |\newline \verb|Opportunity to Learn 0.249 (-0.013, 0.512) 0.238* (0.009, 0.467) |\newline \verb|Performance-Based Raises -0.033 (-0.366, 0.299) |\newline \verb|Too Critical 0.015 (-0.227, 0.258) |\newline \verb|Advancement 11.011 (-8.240, 30.262) 11.258 (-0.779, 23.296)|\newline \verb|------------------------------------------------------------------------|\newline \verb|Observations 30 30 |\newline \verb|R2 0.715 0.715 |\newline \verb|Adjusted R2 0.656 0.682 |\newline \verb|Akaike Inf. Crit. 210.375 206.412 |\newline \verb|Bayesian Inf. Crit. 220.183 213.418 |\newline \verb|========================================================================|\newline \verb|Note: *p<0.1; **p<0.05; ***p<0.01|\newline \noindent \newpage{}Let us now change the order of the explanatory variables using the \emph{order} argument, and remove the covariate labels. In particular, we would like \emph{learning} and \emph{privileges} to come before all the other covariates. In addition, of the summary statistics reported, let us keep only the number of observations (using the argument \emph{keep.stat}). Instead of reporting ASCII text, we'll go back to producing \LaTeX{} tables by returning the \textit{type} argument to its default value of \textit{``latex''}. \emph{Table 6} is our result. Please note that users can also set the \textit{type} argument to \textit{``html''} to obtain HTML code. \noindent \newline \verb|stargazer(linear.1, linear.2, title="Regression Results",| \newline \verb|dep.var.labels=c("Overall Rating","High Rating"),| \newline \verb|order=c("learning", "privileges"),| \newline \verb|keep.stat="n", ci=TRUE, ci.level=0.90, single.row=TRUE)| \newline \noindent \begin{table}[!htbp] \centering \caption{Regression Results} \label{} \begin{tabular}{@{\extracolsep{5pt}}lcc} \\[-1.8ex]\hline \hline \\[-1.8ex] & \multicolumn{2}{c}{\textit{Dependent variable:}} \\ \cline{2-3} \\[-1.8ex] & \multicolumn{2}{c}{Overall Rating} \\ \\[-1.8ex] & (1) & (2)\\ \hline \\[-1.8ex] learning & 0.692$^{***}$ (0.447, 0.937) & 0.682$^{***}$ (0.470, 0.894) \\ privileges & $-$0.104 ($-$0.325, 0.118) & $-$0.103 ($-$0.316, 0.109) \\ complaints & 0.249 ($-$0.013, 0.512) & 0.238$^{*}$ (0.009, 0.467) \\ raises & $-$0.033 ($-$0.366, 0.299) & \\ critical & 0.015 ($-$0.227, 0.258) & \\ Constant & 11.011 ($-$8.240, 30.262) & 11.258 ($-$0.779, 23.296) \\ \hline \\[-1.8ex] Observations & 30 & 30 \\ \hline \hline \\[-1.8ex] \textit{Note:} & \multicolumn{2}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ \normalsize \end{tabular} \end{table} \emph{stargazer} can also report the content of vectors and matrices. Let us create a table that contains the correlation matrix for the \emph{rating}, \emph{complaints} and \emph{privileges} variables in the \emph{`attitude'} data frame: \noindent \newline \verb|correlation.matrix <- cor(attitude[,c("rating","complaints","privileges")])| \newline \verb|stargazer(correlation.matrix, title="Correlation Matrix")| \newline \noindent \begin{table}[!htbp] \centering \caption{Correlation Matrix} \label{} \begin{tabular}{@{\extracolsep{5pt}} cccc} \\[-1.8ex]\hline \hline \\[-1.8ex] & rating & complaints & privileges \\ rating & $1$ & $0.825$ & $0.426$ \\ complaints & $0.825$ & $1$ & $0.558$ \\ privileges & $0.426$ & $0.558$ & $1$ \\ \hline \\[-1.8ex] \end{tabular} \end{table} \newpage{} \subsection{Including Custom Standard Errors} Instead of reporting the default standard errors, users can choose to include custom vectors. Let us take a look at a brief example, adopted -- with permission -- from Slawa Rokicki's excellent \href{http://rforpublichealth.blogspot.com/}{R for Public Health} blog. In this example, we will consider the sales of ice cream. More specifically, we are going to analyze how they might be affected by the temperature outside. First, we will generate a data set that will, for 500 cities, include values of the following variables: temperature (variable \emph{temp}); sales per 100,000 people (\emph{sales}); and the proportion of the city's population that is female (\emph{female}). \noindent \newline \verb|set.seed(5)| \newline \verb|temp <- rnorm(500, mean = 80, sd = 12)| \newline \verb|sales <- 2 + temp * 3| \newline \verb|| \newline \verb|for (i in 1:length(sales)) {| \newline \verb| if (temp[i]<75 ||\verb| temp[i]>95) sales[i] <- sales[i] + rnorm(1, 0, 25)| \newline \verb| else sales[i] <- sales[i] + rnorm(1, 0, 8)| \newline \verb|}| \newline \verb|| \newline \verb|female <- rnorm(500, mean = 0.5, sd = 0.01)| \newline \verb|icecream <- as.data.frame(cbind(temp, sales, female))| \newline \noindent Now, let us run a simple Ordinary Least Squares (OLS) regression model, and use the \emph{sandwich} package to obtain heteroskedasticity-robust standard errors: \noindent \newline \verb|reg.model <- lm(sales ~ temp + female, data = icecream)| \newline \verb| | \newline \verb|library(sandwich)| \newline \verb|cov <- vcovHC(reg.model, type = "HC") | \newline \verb|robust.se <- sqrt(diag(cov)) | \newline \newpage{}We can now use \emph{stargazer} to create a regression table with the default and heteroskedasticity-robust standard errors in two columns, side by side: \noindent \newline \verb|stargazer(reg.model, reg.model, se=list(NULL, robust.se),| \newline \verb|column.labels=c("default","robust"), align=TRUE)| \newline \noindent \begin{table}[!htbp] \centering \caption{} \label{} \begin{tabular}{@{\extracolsep{5pt}}lD{.}{.}{-3} D{.}{.}{-3} } \\[-1.8ex]\hline \hline \\[-1.8ex] & \multicolumn{2}{c}{\textit{Dependent variable:}} \\ \cline{2-3} \\[-1.8ex] & \multicolumn{2}{c}{sales} \\ & \multicolumn{1}{c}{default} & \multicolumn{1}{c}{robust} \\ \\[-1.8ex] & \multicolumn{1}{c}{(1)} & \multicolumn{1}{c}{(2)}\\ \hline \\[-1.8ex] temp & 2.972^{***} & 2.972^{***} \\ & (0.067) & (0.084) \\ & & \\ female & -37.819 & -37.819 \\ & (81.064) & (78.926) \\ & & \\ Constant & 23.916 & 23.916 \\ & (41.187) & (40.408) \\ & & \\ \hline \\[-1.8ex] Observations & \multicolumn{1}{c}{500} & \multicolumn{1}{c}{500} \\ R$^{2}$ & \multicolumn{1}{c}{0.799} & \multicolumn{1}{c}{0.799} \\ Adjusted R$^{2}$ & \multicolumn{1}{c}{0.798} & \multicolumn{1}{c}{0.798} \\ Akaike Inf. Crit. & \multicolumn{1}{c}{4,318.054} & \multicolumn{1}{c}{4,318.054} \\ Bayesian Inf. Crit. & \multicolumn{1}{c}{4,334.912} & \multicolumn{1}{c}{4,334.912} \\ Residual Std. Error (df = 497) & \multicolumn{1}{c}{18.068} & \multicolumn{1}{c}{18.068} \\ F Statistic (df = 2; 497) & \multicolumn{1}{c}{984.916$^{***}$} & \multicolumn{1}{c}{984.916$^{***}$} \\ \hline \hline \\[-1.8ex] \textit{Note:} & \multicolumn{2}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ \normalsize \end{tabular} \end{table} \subsection{Many supported models} \emph{stargazer} supports objects from the most widely used statistical functions and packages. In particular, the package supports model objects from \emph{aftreg }(eha)\emph{, arima} (stats)\emph{, betareg} (betareg), \emph{binaryChoice }(sampleSelection)\emph{, bj }(rms)\emph{, brglm }(brglm)\emph{, censReg} (censReg)\emph{, coeftest }(lmtest)\emph{, coxph }(survival), \emph{coxreg }(eha)\emph{, clm }(ordinal), \emph{clogit }(survival), \textit{cph} (rms), \textit{dynlm} (dynlm), \emph{ergm }(ergm), \textit{errorsarlm} (spdev), \emph{felm} (lfe), \emph{gam }(mgcv),\emph{ garchFit }(fGarch),\emph{ gee }(gee),\emph{ glm }(stats), \textit{Glm} (rms),\emph{ glmer }(lme4),\emph{ glmrob}(robustbase), \emph{gls} (nlme), \textit{Gls} (rms), \textit{gmm} (gmm), \emph{heckit} (sampleSelection), \emph{hetglm} (glmx), \emph{hurdle }(pscl), \emph{ivreg} (AER), \textit{lagarlm} (spdep), \emph{lm}(stats),\emph{ lme }(nlme), \emph{lmer} (lme4), \emph{lmrob} (robustbase), \textit{lrm} (rms), \textit{maBina}\textit{\emph{ (erer)}}\textit{, mclogit }\textit{\emph{(mclogit)}}\textit{, mlogit }\textit{\emph{(mlogit)}}\textit{, mnlogit }\textit{\emph{(mnlogit)}}\textit{, mlreg} (eha), \emph{multinom} (nnet),\emph{ nlme }(nlme), \emph{nlmer} (lme4), \textit{ols} (rms), \emph{pgmm} (plm), \textit{phreg} (eha), \emph{plm} (plm), \emph{pmg} (plm), \emph{polr} (MASS), \textit{psm} (rms), \textit{rem.dyad} (relevent), \emph{rlm} (MASS), \textit{rq} (quantreg), \textit{Rq} (rms), \emph{selection }(sampleSelection)\emph{, svyglm} (survey), \emph{survreg }(survival), \emph{tobit} (AER), \textit{weibreg} (eha), \emph{zeroinfl} (pscl), as well as from the implementation of these in \emph{zelig}. In addition, stargazer also supports the following zelig models: ``\textit{relogit''}, ``\emph{cloglog.net}'', ``\emph{gamma.net}'', ``\emph{probit.net}'' and ``\emph{logit.net}''. The number of models and objects that \emph{stargazer} can accommodate puts it ahead of most of the alternative R-to-\LaTeX{} options. As the development of the package continues, this list will continue expanding to matching models, as well as new, user-made, or customized statistical models. \subsection{Beautiful aesthetics} \emph{stargazer} is very pleasing to the eye, and allows the user to customize all variable labels, as well as the formatting of the resulting table. If you'd like to create tables that look like those from your discipline's leading journal, \emph{stargazer} can help you with that as well. You can use the style argument to choose a template of your choice. Economics and management scholars can thus create tables that resemble those published in the \emph{American Economic Review}, in the \emph{Quarterly Journal of Economics}, or in \emph{Administrative Science Quarterly}. Political scientists can avail themselves of templates based on the \emph{American Political Science Review}, the \emph{American Journal of Political Science}, and on \emph{International Organization}. For sociologists and demographers, the \emph{American Sociological Review}, the \emph{American Sociological Review} and \emph{Demography} are available.\newpage{} \section{Citing \emph{stargazer} in Research Publications} If you use the \emph{stargazer} package in your research publications, please remember to include the following citation:\\ \noindent \texttt{Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables. R package version 5.2.3.} \texttt{https://CRAN.R-project.org/package=stargazer}~\\ \texttt{}~\\ \noindent \textbf{Note:} An early version of this document was adapted from \href{http://www.r-bloggers.com/stargazer-package-for-beautiful-latex-tables-from-r-statistical-models-output/}{my guest blog post} on Tal Galili's excellent \href{http://www.r-statistics.com/}{R-statistics blog}. \end{document}