## ---- german------------------------------------------------------------------ data("german", package = "rchallenge") ## ---- germansample------------------------------------------------------------ set.seed(2409) dat <- droplevels(german[sample(seq_len(NROW(german)), size = 500), ]) ## ---- germanstr2, eval = FALSE------------------------------------------------ # str(dat) ## ---- germanstr3, echo = FALSE------------------------------------------------ str(dat, width = 80, strict.width = "cut") ## ---- ctree------------------------------------------------------------------- set.seed(2906) ct_partykit <- partykit::ctree(credit_risk ~ ., data = dat, control = partykit::ctree_control(mtry = 5, teststat = "quadratic", testtype = "Univariate", mincriterion = 0, saveinfo = FALSE)) ## ---- stablelearner_cforest--------------------------------------------------- set.seed(2907) cf_stablelearner <- stablelearner::stabletree(ct_partykit, sampler = stablelearner::subsampling, savetrees = TRUE, B = 100, v = 0.632) ## ---- stablelearner_methods--------------------------------------------------- summary(cf_stablelearner, original = FALSE) ## ---- stablelearner_barplot, fig.height = 4, fig.width = 8-------------------- barplot(cf_stablelearner, original = FALSE, cex.names = 0.6) ## ---- stablelearner_image, fig.height = 4, fig.width = 8---------------------- image(cf_stablelearner, original = FALSE, cex.names = 0.6) ## ---- stablelearner_plot, fig.height = 12, fig.width = 8---------------------- plot(cf_stablelearner, original = FALSE, select = c("status", "present_residence", "duration")) ## ---- stablelearner_trees, eval = FALSE--------------------------------------- # cf_stablelearner$tree[[1]] ## ---- partykit_cforest-------------------------------------------------------- set.seed(2908) cf_partykit <- partykit::cforest(credit_risk ~ ., data = dat, ntree = 100, mtry = 5) ## ---- as.stabletree_partykit, eval = FALSE------------------------------------ # cf_partykit_st <- stablelearner::as.stabletree(cf_partykit) # summary(cf_partykit_st, original = FALSE) # barplot(cf_partykit_st) # image(cf_partykit_st) # plot(cf_partykit_st, select = c("status", "present_residence", "duration")) ## ---- partykit_varimp--------------------------------------------------------- partykit::varimp(cf_partykit) ## ---- party_cforest, eval = FALSE--------------------------------------------- # set.seed(2909) # cf_party <- party::cforest(credit_risk ~ ., data = dat, # control = party::cforest_unbiased(ntree = 100, mtry = 5)) ## ---- as.stabletree_party, eval = FALSE--------------------------------------- # cf_party_st <- stablelearner::as.stabletree(cf_party) # summary(cf_party_st, original = FALSE) # barplot(cf_party_st) # image(cf_party_st) # plot(cf_party_st, select = c("status", "present_residence", "duration")) ## ---- randomForest------------------------------------------------------------ set.seed(2910) rf <- randomForest::randomForest(credit_risk ~ ., data = dat, ntree = 100, mtry = 5) ## ---- as.stabletree_randomForest---------------------------------------------- rf_st <- stablelearner::as.stabletree(rf) summary(rf_st, original = FALSE) ## ---- rf_barplot, fig.height = 4, fig.width = 8------------------------------- barplot(rf_st, cex.names = 0.6) ## ---- rf_image, fig.height = 4, fig.width = 8--------------------------------- image(rf_st, cex.names = 0.6) ## ---- rf_plot, fig.height = 12, fig.width = 8--------------------------------- plot(rf_st, select = c("status", "present_residence", "duration")) ## ---- ranger, eval = FALSE---------------------------------------------------- # set.seed(2911) # rf_ranger <- ranger::ranger(credit_risk ~ ., data = dat, # num.trees = 100, mtry = 5) ## ---- as.stabletree_ranger, eval = FALSE-------------------------------------- # rf_ranger_st <- stablelearner::as.stabletree(rf_ranger) # summary(rf_ranger_st, original = FALSE) # barplot(rf_ranger_st) # image(rf_ranger_st) # plot(rf_ranger_st, select = c("status", "present_residence", "duration"))