## ---- include=TRUE, eval=FALSE------------------------------------------------ # install.packages("spm", dependencies = c("Imports", "Suggests")) ## ---- include=TRUE, eval=FALSE------------------------------------------------ # library(spm) # data(petrel) # set.seed(1234) # idwcv1 <- idwcv(petrel[, c(1,2)], petrel[, 5], nmax = 12, idp = 2, predacc = "VEcv") # idwcv1 # [1] 23.11333 ## ---- include=TRUE, eval=FALSE------------------------------------------------ # library(spm) # data(petrel) # set.seed(1234) # rfokcv1 <- rfokcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], predacc = "VEcv") # rfokcv1 # [1] 39.88995 ## ---- include=TRUE, eval=FALSE------------------------------------------------ # data(petrel) # idp <- c((1:10)*0.2) # nmax <- c(10:20) # idwopt <- array(0,dim=c(length(idp),length(nmax))) # for (i in 1:length(idp)) { # for (j in 1:length(nmax)) { # set.seed(1234) # idwcv2.3 <- idwcv(petrel[, c(1,2)], petrel[, 5], nmax = nmax[j], idp = idp[i], predacc = "VEcv" ) # idwopt[i, j] <- idwcv2.3 # } # } # which (idwopt == max(idwopt), arr.ind = T ) # > row col # [1,] 3 3 # idp[3] # > [1] 0.6 # nmax[3] # > [1] 12 ## ---- include=TRUE, eval=FALSE------------------------------------------------ # library(spm) # data(petrel) # set.seed(1234) # idwcv1 <- idwcv(petrel[, c(1,2)], petrel[, 5], nmax = 12, idp = 0.6, predacc = "VEcv") # idwcv1 # [1] 35.93557 ## ---- include=TRUE, eval=FALSE------------------------------------------------ # n <- 100 # number of iterations, 60 to 100 is recommended. # measures <- NULL # for (i in 1:n) { # idwcv1 <- idwcv(petrel [, c(1,2)], petrel [, 5], nmax = 12, idp = 0.6, predacc = "ALL") # measures <- rbind(measures, idwcv1$vecv) # } # mean(measures) # [1] 33.69691 ## ---- include=TRUE, eval=FALSE------------------------------------------------ # library(spm) # data(petrel) # data(petrel.grid) # idwpred1 <- idwpred(petrel[, c(1,2)], petrel[, 5], petrel.grid, nmax = 12, idp = 0.6) # names(idwpred1) # [1] "LON" "LAT" "var1.pred" "var1.var" # idwpred1 <- (idwpred1)[, -4] # remove the 4th column as it contains no information. # class(idwpred1) # [1] "data.frame" # names(idwpred1) <- c("longitude", "latitude", "gravel") # head(idwpred1) # longitude latitude gravel # 470277 128.8022 -10.60239 22.00789 # 470278 128.8047 -10.60239 22.00805 # 470279 128.8072 -10.60239 22.00822 # 470280 128.8097 -10.60239 22.00838 # 470281 128.8122 -10.60239 22.00855 # 470282 128.8147 -10.60239 22.00873 ## ---- include=TRUE, eval=FALSE------------------------------------------------ # set.seed(1234) # library(spm) # data(petrel) # data(petrel.grid) # data(petrel) # data(petrel.grid) # rfokpred1 <- rfokpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], # petrel.grid[, c(1,2)], petrel.grid, ntree = 500, nmax = 11, vgm.args = ("Log")) # class(rfokpred1) # [1] "data.frame" # names(rfokpred1) # # [1] "LON" "LAT" "Predictions" "Variances"