## ----Library call, echo=FALSE------------------------------------------------- library(spind) library(ggplot2) knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ## ----GEE Data Infiling, eval=FALSE-------------------------------------------- # data(musdata) # data(carlinadata) # # # Examine the structure to familiarize yourself with the data # ?musdata # head(musdata) # # ?carlinadata # head(carlinadata) # ## ----GEE Example, fig.width=7.15,fig.height=5--------------------------------- # Next, fit a simple GEE and view the output coords <- musdata[ ,4:5] mgee <- GEE(musculus ~ pollution + exposure, family = "poisson", data = musdata, coord = coords, corstr = "fixed", scale.fix = FALSE) summary(mgee, printAutoCorPars = TRUE) plot(mgee) predictions <- predict(mgee, newdata = musdata) # you can modify the plot itself by extracting it from the plot object and # treating it as any other ggplot object. library(ggplot2) my_plot <- mgee$plot # more of a base-R graphic feel my_plot + theme(plot.background = element_rect(fill = NA, color = 'black', size = 1.25)) ## ----WRM Example, fig.width = 7.15, fig.height = 5---------------------------- mwrm <- WRM(musculus ~ pollution + exposure, family = "poisson", data = musdata, coord = coords, level = 1) plot(mwrm) summary(mwrm) predictions <- predict(mwrm, newdata = musdata) ## ----Covar.plot Example, fig.width = 7.15, fig.height = 5--------------------- coords <- carlinadata[ ,4:5] wave_covariance <- covar.plot(carlina.horrida ~ aridity + land.use - 1, data = carlinadata, coord = coords, wavelet = "d4", wtrafo = 'modwt', plot = 'covar') wave_variance <- covar.plot(carlina.horrida ~ aridity + land.use - 1, data = carlinadata, coord = coords, wavelet = "d4", wtrafo = 'modwt', plot = 'var') wave_variance$result wave_covariance$result # view plots side by side library(gridExtra) grid.arrange(wave_variance$plot, wave_covariance$plot) ## ----Upscale Example, fig.width = 7.15, fig.height = 7------------------------ upscale(carlinadata$land.use, coord = coords, pad = mean(carlinadata$land.use)) ## ----Step.spind Example------------------------------------------------------- # For demonstration only. We are artificially imposing a grid structure # on data that is not actually spatial data library(MASS) data(birthwt) x <- rep(1:14, 14) y <- as.integer(gl(14, 14)) coords <- cbind(x[-(190:196)], y[-(190:196)]) formula <- formula(low ~ age + lwt + race + smoke + ftv + bwt + I(race^2)) mgee <- GEE(formula, family = "gaussian", data = birthwt, coord = coords, corstr = "fixed",scale.fix = TRUE) mwrm <- WRM(formula, family = "gaussian", data = birthwt, coord = coords, level = 1) ssgee <- step.spind(mgee, birthwt) sswrm <- step.spind(mwrm, birthwt, AICc = TRUE) best.mgee <- GEE(ssgee$model, family = "gaussian", data = birthwt, coord = coords, corstr = "fixed",scale.fix = TRUE) best.wrm <- WRM(sswrm$model, family = "gaussian", data = birthwt, coord = coords, level = 1) summary(best.mgee, printAutoCorPars = FALSE) summary(best.wrm) ## ----mmi... example----------------------------------------------------------- # Example for WRMs data(carlinadata) coords <- carlinadata[ ,4:5] wrm <- WRM(carlina.horrida ~ aridity + land.use, family = "poisson", data = carlinadata, coord = coords, level = 1, wavelet = "d4") ms1 <- scaleWMRR(carlina.horrida ~ aridity + land.use, family = "poisson", data = carlinadata, coord = coords, scale = 1, wavelet = 'd4', trace = FALSE) mmi <- mmiWMRR(wrm, data = carlinadata, scale = 1, detail = TRUE) # Example for GEEs library(MASS) data(birthwt) # impose an artificial (not fully appropriate) grid structure x <- rep(1:14, 14) y <- as.integer(gl(14, 14)) coords <- cbind(x[-(190:196)], y[-(190:196)]) formula <- formula(low ~ race + smoke + bwt) mgee <- GEE(formula, family = "gaussian", data = birthwt, coord = coords, corstr = "fixed", scale.fix = TRUE) mmi <- mmiGEE(mgee, birthwt) ## ----RVI.plot Example, fig.width=7.15, fig.height=5--------------------------- data(carlinadata) coords <- carlinadata[ ,4:5] rvi <- rvi.plot(carlina.horrida ~ aridity + land.use, family = "poisson", data = carlinadata, coord = coords, maxlevel = 4, detail = TRUE, wavelet = "d4") rvi$rvi rvi$plot ## ----GOF data, eval = FALSE--------------------------------------------------- # data(hook) # # # Familiarize yourself with the data # ?hook # head(hook) # ## ----Spatial Indices Example, fig.width = 7.15, fig.height = 5---------------- df <- hook[ ,1:2] coords <- hook[ ,3:4] # Threshold dependent metrics th.dep.indices <- th.dep(data = df, coord = coords, spatial = TRUE) # Confusion Matrix th.dep.indices$cm # Kappa statistic th.dep.indices$kappa # Threshold independent metrics th.indep.indices <- th.indep(data = df, coord = coords, spatial = TRUE) # AUC th.indep.indices$AUC # TSS th.indep.indices$TSS # AUC plot th.indep.indices$plot ## ----ACFFT example------------------------------------------------------------ coords <- musdata[ ,4:5] mglm <- glm(musculus ~ pollution + exposure, family = "poisson", data = musdata) ac <- acfft(coords, resid(mglm, type = "pearson"), lim1 = 0, lim2 = 1, dmax = 10) ac