## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval = FALSE------------------------------------------------------------ # install.packages("spectre") ## ---- eval = FALSE------------------------------------------------------------ # install.packages("devtools") # devtools::install_github("r-spatialecology/spectre") ## ----------------------------------------------------------------------------- library(spectre) ## ----------------------------------------------------------------------------- # load "observed" alpha-, beta- and gamma-diversity values of the random species composition alpha_list <- minimal_example_data$alpha_list # richness beta_list <- minimal_example_data$beta_list # Bray-Curtis dissimilarity total_gamma <- dim(minimal_example_data$species_list)[1] # 20 species ## ---- message = FALSE, warning = FALSE---------------------------------------- # Calculate objective_matrix from (modelled) alpha-diversity and Bray-Curtis dissimilarity objective_matrix <- spectre::generate_commonness_matrix_from_gdm( gdm_predictions = beta_list, alpha_list = alpha_list) ## ---- message = FALSE, warning = FALSE---------------------------------------- res <- spectre::run_optimization_min_conf( alpha_list = alpha_list, total_gamma = total_gamma, target = objective_matrix, max_iterations = 1000) # n iterations ## ---- message = FALSE--------------------------------------------------------- error_c <- spectre::calc_commonness_error(x = res, objective_matrix = objective_matrix) ## ---- include = TRUE, out.width="50%", fig.align = "center"------------------- # With an increasing number of iterations, the solution matrix improved spectre::plot_error(x = res) # Plot commonness error between objective function and solution matrix spectre::plot_commonness(x = res, target = objective_matrix)