\documentclass[10pt,xcolor=dvipsnames]{beamer} \usepackage{multimedia} %\usepackage{beamerthemesplit} \usepackage{times} \usepackage{color} \usepackage{colourlist} \usepackage{colortbl} \usepackage{enumerate} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{fancybox} %cajas \usepackage{indentfirst} \usepackage{hyperref} \usepackage{rotating} % para rotar celdillas dentro de tablas y tablas %\usepackage{beamerthemeshadow} % Sombreado en las diapositivas \beamertemplatetransparentcovereddynamic \usepackage[english]{babel} \usepackage[latin1]{inputenc} % iso-8859-15 %\usepackage[utf8]{inputenc} % UTF-8 %\usepackage{beamer_bgWhite} \usepackage{latexsym} %\usecolortheme{seahorse} %tonos lila %\usecolortheme[named=Plum]{structure} %violetas-negros %\usecolortheme[named=Brown]{structure}% marrones %\usetheme[height=7mm]{Rochester} \usefonttheme{serif} \usecolortheme{rose} \usetheme{Goettingen} \hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue} \title[Wetland model]{Spatio-temporal dynamic modeling of plant communities responses to hydrological pressures in a semiarid Mediterranean wetland} \author[ISEM 2013]{J. Mart{\'i}nez-L{\'o}pez$^{1}$, J. Mart{\'i}nez-Fern{\'a}ndez$^{1,2}$, B. Naimi$^{3}$, M.F. Carre{\~n}o$^{1}$ and M.A. Esteve$^{1}$} \date{\scriptsize $^{1}$Ecology and Hydrology Department - University of Murcia (Murcia, Spain)\\$^{2}$Applied Biology Dept. University Miguel Hernandez (Elche, Spain)\\$^{3}$ITC - University of Twente (Enschede, The Netherlands)} %\VignetteIndexEntry{spdynmod slides} \begin{document} %\renewcommand{\tablename}{\bf } %\setbeamercolor{frametitle}{fg=blue} %para cambiar color de los titulos %\setbeamercolor{author}{fg=marron} %para cambiar color del autor \setbeamercolor{author}{fg=blue} %para cambiar color del autor %\setbeamercolor{date}{fg=marron} %para cambiar color de los titulos %\setbeamercolor{title}{fg=blue,bg=blue!15!white} %para cambiar color del titulo \setbeamercolor{item}{fg=blue} %para cambiar color de los items \setbeamertemplate{items}[triangle] %forma de los items : triangle, circle, square \frame{\maketitle \begin{center} \includegraphics[width=75mm]{figures/bandeau_conf.png} \end{center} } \section{Introduction} \frame{\frametitle{Study area} \begin{center} \includegraphics[width=0.9\textwidth]{figures/fig1.png} \end{center} } \frame{\frametitle{Marina del Carmoli wetland (300 ha)} \begin{center} \includegraphics[width=\textwidth]{figures/cr10.png} \end{center} } \frame{\frametitle{Wetland plant communities} \begin{block}{} Semiarid Mediterranean saline wetlands are semi-terrestrial ecosystems \end{block} \begin{center} \includegraphics[width=\textwidth]{figures/mc_ila_pcoms.png} \end{center} \begin{exampleblock}{} \begin{itemize} \item Salt steppe (left) - priority habitat by the Habitats Directive \item Salt marsh (center) - habitat of interest by the HD \item Reed beds (right) ({\it Phragmites australis}) - invasive \end{itemize} \end{exampleblock} } \frame{\frametitle{External water inputs} Percentage of irrigated areas has increased in the last decades due to the opening of a water transfer (Mart\'inez-L\'opez et al., 2013) \begin{center} \includegraphics[width=\textwidth]{figures/cr10_ws_lulc.png} \end{center} } \frame{\frametitle{Plant communities change} \begin{alertblock}{} Important plant communities are being lost! \end{alertblock} \begin{center} \includegraphics[width=0.7\textwidth]{figures/vegmaps_mc.png} \\ Carre\~no et al., 2008; Mart\'inez-L\'opez et al., 2012 \end{center} } %\section{Objectives} \frame{\frametitle{Objective} \begin{block}{} \begin{itemize} \item Spatially explicit wetland model of how irrigated agriculture is affecting plant community composition in this semiarid Mediterranean wetland %\begin{itemize} %\item tool for wetland conservation and management studies %\item forecast the loss of important plant communities due to irrigation pressures %\end{itemize} \end{itemize} \end{block} } \section{Methods} \frame{\frametitle{Modelling environment} \begin{block}{} \begin{itemize} \item R as a modelling environment: \begin{itemize} \item GIS capabilities \item source code is flexible \item free availabity and growing user community \end{itemize} \end{itemize} \end{block} \begin{center} \includegraphics[width=0.25\textwidth]{figures/Rlogo.png} \end{center} } \frame{\frametitle{State variables} \begin{exampleblock}{} \begin{itemize} \item Wetland is divided into pixels (25 m) \item Plant communities are modelled separately pixel by pixel (4 maps) \item The total abundance of plant communities within a pixel is limited so: \begin{itemize} \item competition among plant communities mediated by \begin{itemize} \item total drainge water input to the wetland \item spatial environmental variables influencing water availability and growth \end{itemize} \item the dispersion of other PC from the surrounding pixels \end{itemize} \end{itemize} \end{exampleblock} \begin{center} \includegraphics[width=0.5\textwidth]{figures/pixel.png} \end{center} } \frame{\frametitle{Initial and validation maps of plant communities} \begin{exampleblock}{} Model was tested by means of remote sensing data for the period 1992-2008 \end{exampleblock} \begin{center} \includegraphics[width=0.7\textwidth]{figures/vegmaps_mc.png} \\ Carre\~no et al., 2008; Mart\'inez-L\'opez et al., 2012 \end{center} } %\frame{\frametitle{Main variables and parameters} %\begin{exampleblock}{} %Flow from state variable A to B (per pixel) %\end{exampleblock} %\centering %\includegraphics[width=\textwidth]{figures/mcdynmod1.png} %\begin{alertblock}{} %Shaded squares represent non spatial variables/parameters and oval shaped variables refer to state variables. %\end{alertblock} %} \frame{\frametitle{Model assumptions I} \begin{exampleblock}{} \begin{itemize} \item Increasing water input \item Only conversion to more humid / less saline plant communities \end{itemize} \end{exampleblock} \begin{center} \includegraphics[width=0.8\textwidth]{figures/mc_ila_pcoms.png}\\ \includegraphics[width=0.7\textwidth]{figures/growth.png} \end{center} } \frame{\frametitle{Model assumptions II} \begin{exampleblock}{native vs. invasive taxa} \begin{itemize} \item invasive reed beds are potentially present in all pixels \item salt marsh is able to disperse into neighbour pixels \end{itemize} \end{exampleblock} \begin{center} \includegraphics[width=0.3\textwidth]{figures/expansion2.png} \hspace{5mm} \includegraphics[width=0.5\textwidth]{figures/neighborhood3.png} \end{center} } \frame{\frametitle{Non spatial forcing input} \begin{exampleblock}{Drainage water input} WARP index (Mart\'inez-L\'opez et al., 2014a,b) \end{exampleblock} \begin{center} \includegraphics[width=0.6\textwidth]{figures/mc_ila_warp_time.png} \end{center} } \frame{\frametitle{Wetland environmental spatial parameters} \begin{exampleblock}{} \begin{itemize} \item (A) distance map to ephemeral river 1 ({\bf reed beds}) \item (B) distance map to ephemeral river 2 ({\bf reed beds}) \item (C) Flow accumulation map ({\bf salt marsh}) \end{itemize} \end{exampleblock} \includegraphics[angle=-90,width=\textwidth]{figures/env_spat_var.png} \begin{alertblock}{} \begin{itemize} \item All parameters are on a relative 0--1 scale. %\item Map algebra operations were performed using GRASS GIS and imported into R using the 'rgdal' and 'raster' libraries. \end{itemize} \end{alertblock} } \frame{\frametitle{Model diagram} \begin{center} \includegraphics[width=\textwidth]{figures/mcdynmod3.png} \end{center} } \frame{\frametitle{Model development/execution} \begin{block}{} \begin{enumerate} \item Initial dynamic model was developed using Stella (1 pixel) \item Conversion to R using 'StellaR' script (Naimi and Voinov, 2012) \item State variables and spatial environmental variables as matrices \item Model wrapped as a R function \item ode.2D("euler" method, time = 24 year, TS = 0.25) {\small (library "deSolve")} \end{enumerate} \end{block} %\begin{center} %\includegraphics[width=0.5\textwidth]{figures/neighborhood2.png} %\end{center} } %\section{Results} %\frame{\frametitle{} %Overall Accuracy: 54\% -- 71\% %\begin{center} %\includegraphics[angle=-90,width=0.34\textwidth]{figures/rstack_compar.png} %\end{center} %} %\frame{\frametitle{Simulated total area of each plant community} %\centering %\includegraphics[width=0.6\textwidth]{figures/val_all_areas.png} %\begin{alertblock}{} %Dots represent the are occupied by each plant community based on RS data and model simulated values are represented by lines %\end{alertblock} %} %\frame{\frametitle{0D Error and similarity measures} %\begin{center} %\begin{tabular}{lccc} %{\bf Plant community} & {\bf r} & {\bf NRMSE (\%)} & {\bf EF} \\ %Salt steppe & 0.91 & 44 & 0.77 \\ % 0.01124 %Salt marsh & 0.84 & 54 & 0.65 \\ %0.03817 %Reed beds & 0.88 & 53 & 0.65 \\ % 0.02124 %\end{tabular} %\end{center} %\begin{alertblock}{} %\begin{itemize} %\item 'r' corresponds to the Pearson correlation coefficient ($P < 0.05$) %\item 'NMRSE' to the normalized root mean squared error %\item 'EF' to the efficiency factor. %\end{itemize} %\end{alertblock} %} \section{Conclusions} \frame{\frametitle{Conclusions} \begin{block}{} \begin{enumerate} \item The model serves as a tool for \begin{itemize} \item wetland conservation and management studies (habitat loss) \item testing plant community interactions \item testing relationships between plant communities and environmental variables in space and time \end{itemize} \item The library undergoes further developments in order to become a flexible tool for the development of new spatio-dynamic models \end{enumerate} \end{block} } \end{document}