Type: | Package |
Title: | Sparse Principal Component Regression |
Version: | 2.1.1 |
Date: | 2022-10-15 |
Author: | Shuichi Kawano |
Maintainer: | Shuichi Kawano <skawano@math.kyushu-u.ac.jp> |
Description: | The sparse principal component regression is computed. The regularization parameters are optimized by cross-validation. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://doi.org/10.1016/j.csda.2015.03.016, https://doi.org/10.1016/j.csda.2018.03.008, https://sites.google.com/site/shuichikawanoen/software |
Repository: | CRAN |
NeedsCompilation: | yes |
Packaged: | 2022-10-15 09:08:48 UTC; shuichi |
Date/Publication: | 2022-10-16 07:30:06 UTC |
Cross-validation for spcr
Description
This function performs cross-validation for spcr. cv.spcr
enables us to determine two regularization parameters \lambda_\beta
and \lambda_\gamma
objectively.
Usage
cv.spcr(x, y, k, w=0.1, xi=0.01, nfolds=5, adaptive=FALSE,
center=TRUE, scale=FALSE, lambda.B.length=10, lambda.gamma.length=10,
lambda.B=NULL, lambda.gamma=NULL)
Arguments
x |
A data matrix. |
y |
A response vector. |
k |
The number of principal components. |
w |
Weight parameter with |
xi |
The elastic net mixing parameter with |
nfolds |
The number of folds. The default is 5. |
adaptive |
If |
center |
If |
scale |
If |
lambda.B.length |
The number of candidates for the parameter |
lambda.gamma.length |
The number of candidates for the parameter |
lambda.B |
Optional user-supplied candidates for the parameter |
lambda.gamma |
Optional user-supplied candidates for the parameter |
Value
lambda.gamma.seq |
The values of |
lambda.B.seq |
The values of |
CV.mat |
Matrix of the mean values of cross-validation. The row shows a sequence of |
lambda.gamma.cv |
The value of |
lambda.B.cv |
The value of |
cvm |
The minimum of the mean cross-validated error. |
Author(s)
Shuichi Kawano
skawano@ai.lab.uec.ac.jp
References
Kawano, S., Fujisawa, H., Takada, T. and Shiroishi, T. (2015). Sparse principal component regression with adaptive loading. Compuational Statistics & Data Analysis, 89, 192–203.
See Also
spcr
Examples
#data
n <- 50
np <- 5
set.seed(1)
nu0 <- c(-1, 1)
x <- matrix( rnorm(np*n), n, np )
e <- rnorm(n)
y <- nu0[1]*x[ ,1] + nu0[2]*x[ ,2] + e
#fit
cv.spcr.fit <- cv.spcr(x=x, y=y, k=2)
cv.spcr.fit
#fit (adaptive SPCR)
cv.adaspcr.fit <- cv.spcr(x=x, y=y, k=2, adaptive=TRUE)
cv.adaspcr.fit
Cross-validation for spcr-glm
Description
This function performs cross-validation for SPCR-glm. cv.spcrglm
enables us to determine two regularization parameters \lambda_\beta
and \lambda_\gamma
objectively.
Usage
cv.spcrglm(x, y, k, family=c("binomial","poisson","multinomial"),
w=0.1, xi=0.01, nfolds=5, adaptive=FALSE, q=1, center=TRUE,
scale=FALSE, lambda.B.length=10, lambda.gamma.length=10,
lambda.B=NULL, lambda.gamma=NULL)
Arguments
x |
A data matrix. |
y |
A response vector. |
k |
The number of principal components. |
family |
Response type. |
w |
Weight parameter with |
xi |
The elastic net mixing parameter with |
nfolds |
The number of folds. The default is 5. |
adaptive |
If |
q |
The tuning parameter that controls weights in aSPCR-glm. The default is 1. |
center |
If |
scale |
If |
lambda.B.length |
The number of candidates for the parameter |
lambda.gamma.length |
The number of candidates for the parameter |
lambda.B |
Optional user-supplied candidates for the parameter |
lambda.gamma |
Optional user-supplied candidates for the parameter |
Value
lambda.gamma.seq |
The values of |
lambda.B.seq |
The values of |
CV.mat |
Matrix of the mean values of cross-validation. The row shows a sequence of |
lambda.gamma.cv |
The value of |
lambda.B.cv |
The value of |
cvm |
The minimum of the mean cross-validated error. |
Author(s)
Shuichi Kawano
skawano@ai.lab.uec.ac.jp
References
Kawano, S., Fujisawa, H., Takada, T. and Shiroishi, T. (2018). Sparse principal component regression for generalized linear models. Compuational Statistics & Data Analysis, 124, 180–196.
See Also
spcrglm
Examples
# binomial
n <- 100
np <- 3
nu0 <- c(-1, 1)
set.seed(4)
x <- matrix( rnorm(np*n), n, np )
y <- rbinom(n,1,1-1/(1+exp( (nu0[1]*x[ ,1] + nu0[2]*x[ ,2] ))))
cv.spcrglm.fit <- cv.spcrglm(x=x, y=y, k=1, family="binomial")
cv.spcrglm.fit
# Poisson
set.seed(5)
y <- rpois(n, 1)
cv.spcrglm.fit <- cv.spcrglm(x=x, y=y, k=1, family="poisson")
cv.spcrglm.fit
# multinomial
set.seed(4)
y <- sample(1:4, n, replace=TRUE)
cv.spcrglm.fit <- cv.spcrglm(x=x, y=y, k=1, family="multinomial")
cv.spcrglm.fit
Fit a sparse principal component regression (SPCR)
Description
This function computes a principal component regression model via sparse regularization.
Usage
spcr(x, y, k, lambda.B, lambda.gamma, w=0.1, xi=0.01,
adaptive=FALSE, center=TRUE, scale=FALSE)
Arguments
x |
A data matrix. |
y |
A response vector. |
k |
The number of principal components. |
lambda.B |
The regularization parameter for the parameter |
lambda.gamma |
The regularization parameter for the coefficient vector |
w |
Weight parameter with |
xi |
The elastic net mixing parameter with |
adaptive |
If |
center |
If |
scale |
If |
Value
loadings.B |
the loading matrix B |
gamma |
the coefficient |
gamma0 |
intercept |
loadings.A |
the loading matrix A |
Author(s)
Shuichi Kawano
skawano@ai.lab.uec.ac.jp
References
Kawano, S., Fujisawa, H., Takada, T. and Shiroishi, T. (2015). Sparse principal component regression with adaptive loading. Compuational Statistics & Data Analysis, 89, 192–203.
See Also
cv.spcr
Examples
#data
n <- 100
np <- 5
set.seed(4)
nu0 <- c(-1, 1)
x <- matrix( rnorm(np*n), n, np )
e <- rnorm(n)
y <- nu0[1]*x[ ,1] + nu0[2]*x[ ,2] + e
#fit
spcr.fit <- spcr(x=x, y=y, k=2, lambda.B=6, lambda.gamma=2)
spcr.fit
#fit (adaptive SPCR)
adaspcr.fit <- spcr(x=x, y=y, k=2, lambda.B=6, lambda.gamma=2, adaptive=TRUE)
adaspcr.fit
Fit a sparse principal component regression for generalized linear models (SPCR-glm)
Description
This function computes a principal component regression for generalized linear models via sparse regularization.
Usage
spcrglm(x, y, k, family=c("binomial","poisson","multinomial"), lambda.B,
lambda.gamma, w=0.1, xi=0.01, adaptive=FALSE, q=1, center=TRUE, scale=FALSE)
Arguments
x |
A data matrix. |
y |
A response data. |
k |
The number of principal components. |
family |
Response type. |
lambda.B |
The regularization parameter for the parameter |
lambda.gamma |
The regularization parameter for the coefficient vector |
w |
Weight parameter with |
xi |
The elastic net mixing parameter with |
adaptive |
If |
q |
The tuning parameter that controls weights in aSPCR-glm. The default is 1. |
center |
If |
scale |
If |
Value
loadings.B |
the loading matrix B |
gamma |
the coefficient |
gamma0 |
intercept |
loadings.A |
the loading matrix A |
Author(s)
Shuichi Kawano
skawano@ai.lab.uec.ac.jp
References
Kawano, S., Fujisawa, H., Takada, T. and Shiroishi, T. (2018). Sparse principal component regression for generalized linear models. Compuational Statistics & Data Analysis, 124, 180–196.
See Also
cv.spcrglm
Examples
# binomial
n <- 100
np <- 5
nu0 <- c(-1, 1)
set.seed(4)
x <- matrix( rnorm(np*n), n, np )
y <- rbinom(n,1,1-1/(1+exp( (nu0[1]*x[ ,1] + nu0[2]*x[ ,2] ))))
spcrglm.fit <- spcrglm(x=x, y=y, k=2, family="binomial", lambda.B=2, lambda.gamma=1)
spcrglm.fit
# Poisson
set.seed(4)
y <- rpois(n, exp( (nu0[1]*x[ ,1] + nu0[2]*x[ ,2] ) ))
spcrglm.fit <- spcrglm(x=x, y=y, k=2, family="poisson", lambda.B=2, lambda.gamma=1)
spcrglm.fit
# multinomial
set.seed(4)
y <- sample(1:4, n, replace=TRUE)
spcrglm.fit <- spcrglm(x=x, y=y, k=2, family="multinomial", lambda.B=2, lambda.gamma=2)
spcrglm.fit