EWMA chart with estimated in-control state =========================================== Using normality assumptions --------------------------- The following is an illustration for EWMA charts, assuming that all observations are normally distributed. Based on $n$ past in-control observations $X_{-n},\dots,X_{-1}$, the in-control mean and standard deviation can be estimated by the sample mean, $\hat \mu$, and sample standard deviation, $\hat \sigma$. For new observations $X_1,X_2,\dots$, an EWMA chart based on these estimated parameters is defined by $$ M_0=0, \quad M_t=\lambda \frac{X_t-\hat \mu}{\hat \sigma}+(1-\lambda) M_{t-1} $$ ```{r,echo=FALSE} set.seed(12381900) ``` The following generates a data set of past observations (replace this with your observed past data). ```{r} X <- rnorm(250) ``` Next, we initialise the chart and compute the estimates needed for running the chart - in this case $\hat \mu$ and $\hat \sigma$. ```{r} library(spcadjust) chart <- new("SPCEWMA",model=SPCModelNormal(Delta=0),lambda=0.1); xihat <- xiofdata(chart,X) str(xihat) ``` Calibrating the chart to a given average run length (ARL) --------------------------------------------------- We now compute a threshold that with roughly 90% probability results in an average run length of at least 100 in control. This is based on parametric resampling assuming normality of the observations. ```{r} cal <- SPCproperty(data=X,nrep=50, property="calARL",chart=chart,params=list(target=100),quiet=TRUE) cal ``` You should increase the number of bootstrap replications (the argument nrep) for real applications. Run the chart --------------------------------------------------- Next, we run the chart with new observations that are in-control. ```{r} newX <- rnorm(100) S <- runchart(chart, newdata=newX,xi=xihat) ``` Then we plot the data and the chart. ```{r,fig=TRUE,fig.width=10,fig.height=4} par(mfrow=c(1,2),mar=c(4,5,0.1,0.1)) plot(newX,xlab="t") plot(S,ylab=expression(S[t]),xlab="t",type="b",ylim=range(-cal@res,S,cal@res+0.3,cal@raw)) lines(c(0,100),rep(cal@res,2),col="red") lines(c(0,100),rep(cal@raw,2),col="blue") abline(0,0,lty=3) lines(c(0,100),rep(-cal@res,2),col="red") lines(c(0,100),rep(-cal@raw,2),col="blue") legend("topleft",c("Adjusted Threshold","Unadjusted Threshold"),col=c("red","blue"),lty=1) ``` ```{r,echo=FALSE} set.seed(123819123) ``` In the next example, the chart is run with data that are out-of-control from time 51 and onwards. ```{r} newX <- rnorm(100,mean=c(rep(0,50),rep(-1,50))) S <- runchart(chart, newdata=newX,xi=xihat) ``` ```{r,fig=TRUE,fig.width=10,fig.height=4,echo=FALSE} par(mfrow=c(1,2),mar=c(4,5,0.1,0.1)) plot(newX,xlab="t") plot(S,ylab=expression(S[t]),xlab="t",type="b",ylim=range(-cal@res,S,cal@res+0.5,cal@raw)) lines(c(0,100),rep(cal@res,2),col="red") lines(c(0,100),rep(cal@raw,2),col="blue") abline(0,0,lty=3) lines(c(0,100),rep(-cal@res,2),col="red") lines(c(0,100),rep(-cal@raw,2),col="blue") legend("topleft",c("Adjusted Threshold","Unadjusted Threshold"),col=c("red","blue"),lty=1) ```