## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=6, fig.height=4 ) ## ----setup-------------------------------------------------------------------- library(soiltestcorr) ## ----warning=FALSE, message=FALSE--------------------------------------------- # Install if needed library(ggplot2) # Plots library(dplyr) # Data wrangling library(tidyr) # Data wrangling library(utils) # Data wrangling library(purrr) # Mapping ## ----------------------------------------------------------------------------- # Example 1 dataset # Fake dataset manually created data_1 <- data.frame("RY" = c(65,80,85,88,90,94,93,96,97,95,98,100,99,99,100), "STV" = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)) # Example 2. Native fake dataset from soiltestcorr package data_2 <- soiltestcorr::data_test # Example 3. Native dataset from soiltestcorr package, Freitas et al. (1966), used by Cate & Nelson (1971) data_3 <- soiltestcorr::freitas1966 ## ----warning=TRUE, message=TRUE----------------------------------------------- # Using dataframe argument, tidy = FALSE -> return a LIST fit_1_tidy_false <- soiltestcorr::cate_nelson_1965(data = data_1, ry = RY, stv = STV, target = 90, tidy = FALSE, plot = FALSE) utils::head(fit_1_tidy_false) ## ----warning=TRUE, message=TRUE----------------------------------------------- # Using dataframe argument, tidy = FALSE -> return a LIST fit_1_tidy_false <- soiltestcorr::cate_nelson_1965(data = data_1, ry = RY, stv = STV, target = 90, tidy = TRUE) utils::head(fit_1_tidy_false) ## ----warning=TRUE, message=TRUE----------------------------------------------- fit_1_vectors_list <- soiltestcorr::cate_nelson_1965(ry = data_1$RY, stv = data_1$STV, target=90, tidy = FALSE) fit_1_vectors_tidy <- soiltestcorr::cate_nelson_1965(ry = data_1$RY, stv = data_1$STV, target=90, tidy = TRUE) ## ----warning=TRUE, message=TRUE----------------------------------------------- fit_2 <- soiltestcorr::cate_nelson_1965(data = data_2, ry = RY, stv = STV, target = 90, tidy = TRUE) utils::head(fit_2) ## ----warning=TRUE, message=TRUE----------------------------------------------- fit_3 <- soiltestcorr::cate_nelson_1965(data = data_3, ry = RY, stv = STK, target = 90, tidy = TRUE) utils::head(fit_3) ## ----warning=T, message=F----------------------------------------------------- # data.all <- dplyr::bind_rows(data_1, data_2, data_3 %>% dplyr::rename(STV = STK), .id = "id") %>% tidyr::nest(data = c("STV", "RY")) ## ----warning=T, message=F----------------------------------------------------- # Run multiple examples at once with map() fit_multiple_map = data.all %>% dplyr::mutate(mod_alcc = purrr::map(data, ~ soiltestcorr::cate_nelson_1965(ry = .$RY, stv = .$STV, target=90, tidy = TRUE))) utils::head(fit_multiple_map) ## ----warning=T, message=F----------------------------------------------------- fit_multiple_group_map <- data.all %>% tidyr::unnest(data) %>% #dplyr::bind_rows(data_1, data_2, .id = "id") %>% dplyr::group_by(id) %>% dplyr::group_map(~ soiltestcorr::cate_nelson_1965(data = ., ry = RY, stv = STV, target = 90, tidy = TRUE)) utils::head(fit_multiple_group_map) ## ----------------------------------------------------------------------------- boot_cn65 <- boot_cn_1965(data = data_3, ry = RY, stv = STK, target = 90, n = 99) boot_cn65 %>% dplyr::slice_head(., n=5) # CSTV Confidence Interval quantile(boot_cn65$CSTV, probs = c(0.025, 0.5, 0.975)) # Plot boot_cn65 %>% ggplot2::ggplot(aes(x = CSTV))+ geom_histogram(color = "grey25", fill = "#9de0bf", bins = 10) ## ----warning=F, message=F----------------------------------------------------- soiltestcorr::cate_nelson_1965(data = data_1, ry = RY, stv = STV, target=90, plot = TRUE) soiltestcorr::cate_nelson_1965(data = data_2, ry = RY, stv = STV, target=90, plot = TRUE) soiltestcorr::cate_nelson_1965(data = data_3, ry = RY, stv = STK, target=90, plot = TRUE)