## ----------------------------------------------------------------------------- summary(iris) ## ----------------------------------------------------------------------------- summary(iris$Sepal.Length) ## ----------------------------------------------------------------------------- fivenum(iris$Sepal.Length) ## ----------------------------------------------------------------------------- summary(iris$Species) ## ---- render = knitr::normal_print-------------------------------------------- library(skimr) skim(iris) ## ----------------------------------------------------------------------------- skim(iris) %>% is_skim_df() ## ---- render = knitr::normal_print-------------------------------------------- skim(iris) %>% dplyr::select(-skim_type, -skim_variable) %>% is_skim_df() ## ---- render = knitr::normal_print-------------------------------------------- skim(iris) %>% dplyr::select(-n_missing) %>% is_skim_df() ## ---- render = knitr::normal_print-------------------------------------------- skim(iris) %>% tibble::as_tibble() ## ---- render = knitr::normal_print-------------------------------------------- skim(iris) %>% dplyr::filter(skim_variable == "Petal.Length") ## ---- render = knitr::normal_print-------------------------------------------- skim(iris) %>% dplyr::select(skim_type, skim_variable, n_missing) ## ---- render = knitr::normal_print-------------------------------------------- skim(iris) %>% dplyr::select(skim_type, skim_variable, numeric.mean) ## ---- render = knitr::normal_print-------------------------------------------- iris %>% dplyr::group_by(Species) %>% skim() ## ---- render = knitr::normal_print-------------------------------------------- skim(iris, Sepal.Length, Species) ## ---- render = knitr::normal_print-------------------------------------------- skim(iris, starts_with("Sepal")) ## ---- render = knitr::normal_print-------------------------------------------- skim(lynx) ## ----------------------------------------------------------------------------- all.equal(skim(lynx), skim(as.data.frame(lynx))) ## ---- render = knitr::normal_print-------------------------------------------- m <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), nrow = 4, ncol = 3) m ## ---- render = knitr::normal_print-------------------------------------------- colMeans(m) skim(m) # Similar to summary.matrix and colMeans() ## ---- render = knitr::normal_print-------------------------------------------- rowMeans(m) skim(t(m)) ## ---- render = knitr::normal_print-------------------------------------------- skim(c(m)) mean(m) ## ---- render = knitr::normal_print-------------------------------------------- iris_setosa <- iris %>% skim_tee() %>% dplyr::filter(Species == "setosa") head(iris_setosa) ## ---- render = knitr::normal_print-------------------------------------------- iris %>% skim() %>% partition() ## ---- render = knitr::normal_print-------------------------------------------- iris %>% skim() %>% yank("numeric") ## ---- render = knitr::normal_print-------------------------------------------- iris %>% skim() %>% to_long() %>% head() ## ---- render = knitr::normal_print-------------------------------------------- iris %>% skim() %>% focus(n_missing, numeric.mean) ## ----------------------------------------------------------------------------- skim(Orange) ## ----------------------------------------------------------------------------- skim(Orange) %>% yank("numeric") ## ----------------------------------------------------------------------------- my_skim <- skim_with(numeric = sfl(new_mad = mad)) my_skim(faithful) ## ----------------------------------------------------------------------------- my_skim <- skim_with(numeric = sfl(new_mad = mad), append = FALSE) my_skim(faithful) ## ----------------------------------------------------------------------------- no_hist <- skim_with(ts = sfl(line_graph = NULL)) no_hist(Nile) ## ----------------------------------------------------------------------------- my_skim <- skim_with( numeric = sfl(total = ~ sum(., na.rm = TRUE)), factor = sfl(missing = ~ sum(is.na(.))), append = FALSE ) my_skim(iris) ## ----------------------------------------------------------------------------- my_skim <- skim_with(base = sfl(length = length)) my_skim(faithful) ## ----------------------------------------------------------------------------- #' @export my_package_skim <- skim_with() ## ----------------------------------------------------------------------------- get_skimmers.my_type <- function(column) { sfl( skim_type = "my_type", total = sum ) } my_data <- data.frame( my_type = structure(1:3, class = c("my_type", "integer")) ) skim(my_data)