## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = 'center' ) library(ggplot2) theme_set(cowplot::theme_cowplot()) ## ----example1----------------------------------------------------------------- library(singleCellHaystack) set.seed(1234) # run the main 'haystack' analysis # inputs are: # 1) the coordinates of the cells in the input space (here: dat.tsne) # 2) the expression data (dat.expression) res <- haystack(dat.tsne, dat.expression) # the returned results 'res' is of class 'haystack' class(res) ## ----example2----------------------------------------------------------------- # show top 10 DEGs show_result_haystack(res.haystack = res, n=10) # alternatively: use a p-value threshold #show_result_haystack(res.haystack = res, p.value.threshold = 1e-10) ## ----------------------------------------------------------------------------- d <- cbind(dat.tsne, t(dat.expression)) d[1:4, 1:4] ## ----fig.width=6, fig.height=4------------------------------------------------ library(ggplot2) ggplot(d, aes(tSNE1, tSNE2, color=gene_497)) + geom_point() + scale_color_distiller(palette="Spectral") ## ----example4----------------------------------------------------------------- # get the top most significant genes, and cluster them by their distribution pattern in the 2D plot sorted.table <- show_result_haystack(res.haystack = res, p.value.threshold = 1e-10) gene.subset <- row.names(sorted.table) # k-means clustering #km <- kmeans_haystack(dat.tsne, dat.expression[gene.subset, ], grid.coordinates=res$info$grid.coordinates, k=5) #km.clusters <- km$cluster # alternatively: hierarchical clustering hm <- hclust_haystack(dat.tsne, dat.expression[gene.subset, ], grid.coordinates=res$info$grid.coordinates) ## ----fig.width=6, fig.height=8------------------------------------------------ ComplexHeatmap::Heatmap(dat.expression[gene.subset, ], show_column_names=FALSE, cluster_rows=hm, name="expression") ## ----------------------------------------------------------------------------- hm.clusters <- cutree(hm, k=4) table(hm.clusters) ## ----------------------------------------------------------------------------- for (cluster in unique(hm.clusters)) { d[[paste0("cluster_", cluster)]] <- colMeans(dat.expression[names(which(hm.clusters == cluster)), ]) } ## ----fig.width=8, fig.height=6------------------------------------------------ lapply(c("cluster_1", "cluster_2", "cluster_3", "cluster_4"), function(cluster) { ggplot(d, aes(tSNE1, tSNE2, color=.data[[cluster]])) + geom_point() + scale_color_distiller(palette="Spectral") }) |> patchwork::wrap_plots()