## ----chunkname, echo=-1------------------------------------------------------- data.table::setDTthreads(2) ## ----echo = FALSE, message = FALSE-------------------------------------------- options(digits = 3) library(simstudy) library(ggplot2) library(scales) library(grid) library(gridExtra) library(survival) library(gee) library(data.table) odds <- function (p) p/(1 - p) # TODO temporary remove when added to package plotcolors <- c("#B84226", "#1B8445", "#1C5974") cbbPalette <- c("#B84226","#B88F26", "#A5B435", "#1B8446", "#B87326","#B8A526", "#6CA723", "#1C5974") ggtheme <- function(panelback = "white") { ggplot2::theme( panel.background = element_rect(fill = panelback), panel.grid = element_blank(), axis.ticks = element_line(colour = "black"), panel.spacing =unit(0.25, "lines"), # requires package grid panel.border = element_rect(fill = NA, colour="gray90"), plot.title = element_text(size = 8,vjust=.5,hjust=0), axis.text = element_text(size=8), axis.title = element_text(size = 8) ) } ## ----------------------------------------------------------------------------- defs <- defData(varname = "x", formula = 0, variance = 3, dist = "normal") defs <- defData(defs, varname = "y", formula = "2 + 3*x", variance = 1, dist = "normal") defs <- defData(defs, varname = "z", formula = "4 + 3*x - 2*y", variance = 1, dist = "normal") defs ## ----------------------------------------------------------------------------- defs <- updateDef(dtDefs = defs, changevar = "y", newformula = "x + 5", newvariance = 2) defs ## ----------------------------------------------------------------------------- defs <- updateDef(dtDefs = defs, changevar = "z", newdist = "poisson", newlink = "log") defs ## ----------------------------------------------------------------------------- defs <- updateDef(dtDefs = defs, changevar = "z", remove = TRUE) defs ## ----------------------------------------------------------------------------- def <- defData(varname = "x", formula = 0, variance = 5, dist = "normal") def <- defData(def, varname = "y", formula = "..B0 + ..B1 * x", variance = "..sigma2", dist = "normal") def ## ----------------------------------------------------------------------------- B0 <- 4; B1 <- 2; sigma2 <- 9 set.seed(716251) dd <- genData(100, def) fit <- summary(lm(y ~ x, data = dd)) coef(fit) fit$sigma ## ----------------------------------------------------------------------------- sigma2 <- 16 dd <- genData(100, def) fit <- summary(lm(y ~ x, data = dd)) coef(fit) fit$sigma ## ----fig.width = 5------------------------------------------------------------ sigma2s <- c(1, 2, 6, 9) gen_data <- function(sigma2, d) { dd <- genData(200, d) dd$sigma2 <- sigma2 dd } dd_4 <- lapply(sigma2s, function(s) gen_data(s, def)) dd_4 <- rbindlist(dd_4) ggplot(data = dd_4, aes(x = x, y = y)) + geom_point(size = .5, color = "grey30") + facet_wrap(sigma2 ~ .) + theme(panel.grid = element_blank()) ## ----------------------------------------------------------------------------- defblk <- defData(varname = "blksize", formula = "..sizes[1] | .5 + ..sizes[2] | .5", dist = "mixture") defblk ## ----------------------------------------------------------------------------- sizes <- c(2, 4) genData(1000, defblk) ## ----------------------------------------------------------------------------- tau <- rgamma(3, 5, 2) tau <- tau / sum(tau) tau d <- defData(varname = "a", formula = 3, variance = 4) d <- defData(d, varname = "b", formula = 8, variance = 2) d <- defData(d, varname = "c", formula = 11, variance = 6) d <- defData(d, varname = "theta", formula = "..tau[1]*a + ..tau[2]*b + ..tau[3]*c", dist = "nonrandom") set.seed(1) genData(4, d) ## ----------------------------------------------------------------------------- d <- updateDef(d, changevar = "theta", newformula = "t(..tau) %*% c(a, b, c)") set.seed(1) genData(4, d) ## ----------------------------------------------------------------------------- effect <- matrix(c(0, 4, 5, 7), nrow = 2) effect ## ----------------------------------------------------------------------------- d1 <- defData(varname = "a", formula = ".5;.5", variance = "1;2", dist = "categorical") d1 <- defData(d1, varname = "b", formula = ".5;.5", variance = "1;2", dist = "categorical") d1 <- defData(d1, varname = "outcome", formula = "..effect[a, b]", dist="nonrandom") ## ----------------------------------------------------------------------------- dx <- genData(1000, d1) dx ## ----------------------------------------------------------------------------- d1 <- updateDef(d1, "outcome", newvariance = 9, newdist = "normal") dx <- genData(1000, d1) ## ----echo=FALSE--------------------------------------------------------------- dsum <- dx[, .(outcome=mean(outcome)), keyby = .(a, b)] ggplot(data = dx, aes(x = factor(a), y = outcome)) + geom_jitter(aes(color = factor(b)), width = .2, alpha = .4, size = .2) + geom_point(data = dsum, size = 2, aes(color = factor(b))) + geom_line(data = dsum, linewidth = 1, aes(color = factor(b), group = factor(b))) + scale_color_manual(values = cbbPalette, name = " b") + theme(panel.grid = element_blank()) + xlab ("a")