## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#", root.dir = getwd() ) ## ----load data, eval = FALSE-------------------------------------------------- # library(simplePHENOTYPES) # data("SNP55K_maize282_maf04") # SNP55K_maize282_maf04[1:8, 1:10] ## ----ST, eval = FALSE--------------------------------------------------------- # create_phenotypes( # geno_obj = SNP55K_maize282_maf04, # add_QTN_num = 3, # add_effect = 0.2, # big_add_QTN_effect = 0.9, # rep = 10, # h2 = 0.7, # model = "A", # home_dir = tempdir()) ## ----MT P, results = "hide", eval = FALSE------------------------------------- # test1 <- create_phenotypes( # geno_obj = SNP55K_maize282_maf04, # add_QTN_num = 3, # dom_QTN_num = 4, # big_add_QTN_effect = c(0.3, 0.3, 0.3), # h2 = c(0.2, 0.4, 0.4), # add_effect = c(0.04,0.2,0.1), # dom_effect = c(0.04,0.2,0.1), # ntraits = 3, # rep = 10, # vary_QTN = FALSE, # output_format = "multi-file", # architecture = "pleiotropic", # output_dir = "Results_Pleiotropic", # to_r = TRUE, # seed = 10, # model = "AD", # sim_method = "geometric", # home_dir = tempdir() # ) ## ----MT P2, results = "hide", eval = FALSE------------------------------------ # custom_geometric_a <- list(trait_1 = c(0.04, 0.0016), # trait_2 = c(0.2, 0.04), # trait_3 = c(0.1, 0.01)) # custom_geometric_d <- list(trait_1 = c(0.04, 0.0016, 6.4e-05, 2.56e-06), # trait_2 = c(0.2, 0.04, 0.008, 0.0016), # trait_3 = c(0.1, 0.01, 0.001, 1e-04)) # # test2 <- create_phenotypes( # geno_obj = SNP55K_maize282_maf04, # add_QTN_num = 3, # dom_QTN_num = 4, # big_add_QTN_effect = c(0.3, 0.3, 0.3), # h2 = c(0.2,0.4, 0.4), # add_effect = custom_geometric_a, # dom_effect = custom_geometric_d, # ntraits = 3, # rep = 10, # vary_QTN = FALSE, # output_format = "multi-file", # architecture = "pleiotropic", # output_dir = "Results_Pleiotropic", # to_r = T, # sim_method = "custom", # seed = 10, # model = "AD", # home_dir = tempdir() # ) # # all.equal(test1, test2) ## ----MT PP, results = "hide", eval = FALSE------------------------------------ # cor_matrix <- matrix(c( 1, 0.3, -0.9, # 0.3, 1, -0.5, # -0.9, -0.5, 1 ), 3) # # sim_results <- create_phenotypes( # geno_obj = SNP55K_maize282_maf04, # ntraits = 3, # pleio_a = 3, # pleio_e = 2, # same_add_dom_QTN = TRUE, # degree_of_dom = 0.5, # trait_spec_a_QTN_num = c(4, 10, 1), # trait_spec_e_QTN_num = c(3, 2, 5), # h2 = c(0.2, 0.4, 0.8), # add_effect = c(0.5, 0.33, 0.2), # epi_effect = c(0.3, 0.3, 0.3), # epi_interaction = 2, # cor = cor_matrix, # rep = 20, # output_dir = "Results_Partially", # output_format = "long", # architecture = "partially", # out_geno = "numeric", # to_r = TRUE, # model = "AE", # home_dir = tempdir() # ) ## ----MT LD, results = "hide", eval = FALSE------------------------------------ # create_phenotypes( # geno_obj = SNP55K_maize282_maf04, # add_QTN_num = 3, # h2 = c(0.2, 0.4), # add_effect = c(0.02, 0.05), # rep = 5, # seed = 200, # output_format = "wide", # architecture = "LD", # output_dir = "Results_LD", # out_geno = "BED", # remove_QTN = TRUE, # ld_max =0.8, # ld_min =0.2, # model = "A", # ld_method = "composite", # type_of_ld = "indirect", # home_dir = tempdir() # ) ## ----MT PP E, results = "hide", eval = FALSE---------------------------------- # residual <- matrix(c(1, 0.1,-0.2, # 0.1, 1,-0.1,-0.2,-0.1, 1), 3) # heritability <- matrix(c(0.2, 0.4, 0.8, # 0.6, 0.7, 0.2), 2) # create_phenotypes( # geno_obj = SNP55K_maize282_maf04, # pleio_a = 3, # pleio_e = 2, # same_add_dom_QTN = TRUE, # degree_of_dom = 1, # trait_spec_a_QTN_num = c(4, 10, 1), # trait_spec_e_QTN_num = c(2, 1, 5), # epi_effect = c(0.01, 0.4, 0.2), # add_effect = c(0.3, 0.2, 0.5), # h2 = heritability, # ntraits = 3, # rep = 5, # vary_QTN = TRUE, # warning_file_saver = FALSE, # output_dir = "Results_Partially_ADE", # output_format = "gemma", # architecture = "partially", # model = "ADE", # QTN_variance = TRUE, # remove_QTN = TRUE, # home_dir = tempdir(), # constraints = list( # maf_above = 0.3, # maf_below = 0.44, # hets = "include" # ), # cor_res = residual # ) ## ----qtn_list, results = "hide", eval = FALSE--------------------------------- # QTN_list <- list() # QTN_list$add[[1]] <- c("ss196523212") # QTN_list$dom[[1]] <- c("ss196510214", "ss196472187") # QTN_list$epi[[1]] <- c("ss196530605", "ss196475446") # create_phenotypes( # geno_obj = SNP55K_maize282_maf04, # add_QTN_num = 1, # dom_QTN_num = 2, # epi_QTN_num = 1, # epi_interaction = 2, # h2 = c(0.92, 0.4) , # add_effect = c(0.90, 0.2), # dom_effect = c(0.01, 0.3), # epi_effect = c(-0.3, 0.7), # ntraits = 2, # QTN_list = QTN_list, # rep = 1, # output_format = "gemma", # out_geno = "BED", # output_dir = "output_data", # model = "ADE", # home_dir = getwd() # ) # ## ----example, results = "hide", eval = FALSE---------------------------------- # create_phenotypes( # geno_path = "PATH/TO/FILE", # prefix = "WGS_chrm_", # add_QTN_num = 3, # h2 = 0.2, # add_effect = 0.02, # rep = 5, # seed = 200, # output_format = "gemma", # output_dir = "Results", # model = "ADE", # home_dir = tempdir() # )