## ----load-r-pkg--------------------------------------------------------------- library(simcdm) ## ----setup-matrix-sims-------------------------------------------------------- # Set a seed for reproducibility set.seed(888) # Setup Parameters N = 15 # Number of Examinees / Subjects J = 10 # Number of Items K = 2 # Number of Skills / Attributes ## ----sim-q-matrix------------------------------------------------------------- # Set a seed for reproducibility set.seed(1512) # Simulate an identifiable Q matrix Q = sim_q_matrix(J, K) Q ## ----sim-eta-matrix----------------------------------------------------------- # Set a seed for reproducibility set.seed(4421) # Simulate an eta matrix eta = sim_eta_matrix(K, J, Q) eta ## ----attribute-classes-gen---------------------------------------------------- # Create a listing of all attribute classes class_alphas = attribute_classes(K) class_alphas ## ----sim-subject-attributes--------------------------------------------------- # Set a seed for reproducibility set.seed(5126) # Create attributes for a subject subject_alphas = sim_subject_attributes(N, K) subject_alphas # Equivalent to: # subject_alphas = class_alphas[sample(2 ^ K, N, replace = TRUE),] ## ----setup-sim-dina----------------------------------------------------------- # Set a seed for reproducibility set.seed(888) # Setup Parameters N = 15 # Number of Examinees / Subjects J = 10 # Number of Items K = 2 # Number of Skills / Attributes # Assign slipping and guessing values for each item ss = gs = rep(.2, J) # Simulate identifiable Q matrix Q = sim_q_matrix(J, K) # Simulate subject attributes subject_alphas = sim_subject_attributes(N, K) ## ----sim-dina-items----------------------------------------------------------- # Set a seed for reproducibility set.seed(2019) # Simulate items under the DINA model items_dina = sim_dina_items(subject_alphas, Q, ss, gs) items_dina ## ----sim-dina-attributes------------------------------------------------------ # Set a seed for reproducibility set.seed(51823) # Simulate attributes under the DINA model attributes = sim_dina_attributes(subject_alphas, Q) attributes ## ----rrum-sim-setup----------------------------------------------------------- # Set a seed for reproducibility set.seed(888) # Setup Parameters N = 15 # Number of Examinees / Subjects J = 10 # Number of Items K = 2 # Number of Skills / Attributes # The probabilities of answering each item correctly for individuals # who do not lack any required attribute pistar = rep(.9, J) # Simulate an identifiable Q matrix Q = sim_q_matrix(J, K) # Penalties for failing to have each of the required attributes rstar = .5 * Q # Latent Class Probabilities pis = c(.1, .2, .3, .4) # Generate latent attribute profile with custom probability (N subjects by K skills) subject_alphas = sim_subject_attributes(N, K, prob = pis) # Equivalent to: # class_alphas = attribute_classes(K) # subject_alphas = class_alphas[sample(2 ^ K, N, replace = TRUE, prob = pis),] ## ----sim-rrum----------------------------------------------------------------- # Set a seed for reproducibility set.seed(912) # Generate rRUM items rrum_items = sim_rrum_items(Q, rstar, pistar, subject_alphas) rrum_items