## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(simIDM) # constant hazards: transitionExp <- exponential_transition(h01 = 1.2, h02 = 1.5, h12 = 1.6) # Weibull hazards: transitionWeib <- weibull_transition(h01 = 1, h02 = 1.2, h12 = 1.3, p01 = 1.1, p02 = 0.8, p12 = 1.2) # piecewise constant hazards: transitionPwc <- piecewise_exponential( h01 = c(1, 1.3), h02 = c(0.8, 1.5), h12 = c(1, 1), pw01 = c(0, 3), pw02 = c(0, 1), pw12 = c(0, 8) ) ## ----------------------------------------------------------------------------- # constant hazards: corTrans(transitionExp) # Weibull hazards: corTrans(transitionWeib) # piecewise constant hazards: corTrans(transitionPwc) ## ----------------------------------------------------------------------------- transitionExp <- exponential_transition(h01 = 1.2, h02 = 1.5, h12 = 1.6) simData <- getOneClinicalTrial( nPat = c(500), transitionByArm = list(transitionExp), dropout = list(rate = 0.8, time = 12), accrual = list(param = "time", value = 1) ) ## ----------------------------------------------------------------------------- # Create TransitionParameters object with starting values for ML estimation: transition <- exponential_transition(h01 = 1, h02 = 1, h12 = 1) # Estimate parameters: est <- estimateParams(data = simData, transition = transition) # Get estimated transition hazards: est$hazards ## ----------------------------------------------------------------------------- corPFSOS(data = simData, transition = transition, bootstrap = TRUE, conf_level = 0.95)