## ----echo = FALSE, message = FALSE---------------------------------------------------------------- library(markdown) library(knitr) knitr::opts_chunk$set( error = FALSE, tidy = TRUE, message = FALSE, fig.align = "center", collapse = TRUE, comment = "#>") options(width = 100) options(rmarkdown.html_vignette.check_title = FALSE) ## ----message=TRUE--------------------------------------------------------------------------------- library(sigminer) data("simulated_catalogs") mat <- t(simulated_catalogs$set1) mat[1:5, 1:5] ## ----eval=FALSE----------------------------------------------------------------------------------- # # Here I reduce the values for n_bootstrap and n_nmf_run # # for reducing the run time. # # In practice, you should keep default or increase the values # # for better estimation. # # # # The input data here is simulated from 10 mutational signatures # e1 <- bp_extract_signatures( # mat, # range = 8:12, # n_bootstrap = 5, # n_nmf_run = 10 # ) ## ----include=FALSE-------------------------------------------------------------------------------- e1 <- readRDS("e1.rds") ## ----message=TRUE, fig.width=4, fig.height=3------------------------------------------------------ bp_show_survey2(e1, highlight = 10) ## ------------------------------------------------------------------------------------------------- obj <- bp_get_sig_obj(e1, 10) ## ----fig.width=10, fig.height=8------------------------------------------------------------------- show_sig_profile(obj, mode = "SBS", style = "cosmic") ## ----fig.width=8, fig.height=5-------------------------------------------------------------------- show_sig_exposure(obj, rm_space = TRUE) ## ----message=TRUE--------------------------------------------------------------------------------- sim <- get_sig_similarity(obj, sig_db = "SBS") ## ----fig.width=10, fig.height=6------------------------------------------------------------------- if (require(pheatmap)) { pheatmap::pheatmap(sim$similarity) }