## ---- echo=FALSE, fig.width=4, fig.height=3------------------------------ par(mai=c(.5,.5,.05,.05), mgp=c(1.2,.3,0), tcl=-.25) plot(seq(-1,1,.01), seq(-1,1,.01)^3, type="l", ylab=expression("scaled Pearson correlation"), xlab="Pearson correlation", ylim=c(-2,2),xlim=c(-1.25,1.25)) abline(a=0, b=1, col="darkgray", lty=3) points(c(-1.25,1.25), c(-1.25^3,1.25^3),col="red",pch=4) legend("bottomright", c("E=1","E=3","nui=1.25"), bty="n", col=c("darkgray","black","red"), pch=c(NA,NA,4), lty=c(3,1,NA)) arrows(x0=-.3, x1=.3, y0=.25,code=3,lwd=2,lty=2, length=0.1, col="blue") text(0,.5, expression(score %->% 0), col="blue") ## ---- eval=FALSE--------------------------------------------------------- # install.packages("segmenTier") ## ---- eval=FALSE--------------------------------------------------------- # library(devtools) # install_github("raim/segmenTier", subdir = "pkg") ## ---- fig.width=7, fig.height=3------------------------------------------ library(segmenTier) data(primseg436) # RNA-seq time-series data # Fourier-transform and cluster time-series: tset <- processTimeseries(ts=tsd, na2zero=TRUE, use.fft=TRUE, dft.range=1:7, dc.trafo="ash", use.snr=TRUE) cset <- clusterTimeseries(tset, K=12) # ... segment it: segments <- segmentClusters(seq=cset, M=100, E=2, nui=3, S="icor") # and inspect results: plotSegmentation(tset, cset, segments, cex=.5, lwd=2) print(segments) ## and get segment border table for further processing head(segments$segments) ## ---- eval=FALSE--------------------------------------------------------- # demo("segment_test", package = "segmenTier") ## ---- eval=FALSE--------------------------------------------------------- # demo("segment_data", package = "segmenTier")