## ----include = FALSE----------------------------------------------------- library(segRDA) ## ----Install, eval=FALSE------------------------------------------------- # # to install the package via CRAN # install.packages("segRDA") # # # to install the package via GitHub # devtools::install_github("DaniloCVieira/segRDA") # ## ------------------------------------------------------------------------ data(sim1) ##Simulated data x<-sim1$envi ## matrix of explanatory variables y<-sim1$comm ## matrix of response variables ## ----Data ordering------------------------------------------------------- sim1o<-OrdData(x=x,y=y, axis=1, method="hellinger") ## ------------------------------------------------------------------------ xo<-sim1o$xo ## ordered explanatory matrix. yo<-sim1o$yo ## ordered community matrix (untransformed). ## ---- fig.height=3.5, fig.width=7,fig.show='hold', tidy=TRUE, tidy.opts=list(width.cutoff=70)---- par(mfrow=c(1,2), mgp=c(1,1,0), cex=.9) image(y, main="Original community data", col=topo.colors(100), axes=F, xlab="Sites", ylab="Species abundance") image(yo, main="Ordered comunity data", col=topo.colors(100), axes=F, xlab="Sites", ylab="Species abundance") ## ----a_ws, results='hide',collapse = TRUE-------------------------------- ws20<-SMW(yo=yo,ws=20, n.rand=10) pool<-SMW(y=yo,ws=c(10,20,30,40), n.rand=10) ## ----collapse = T-------------------------------------------------------- class(ws20) length(ws20) names(ws20) class(pool) length(pool) names(pool) ## ----collapse = T-------------------------------------------------------- ws20_dp<-extract(ws20) ws20_dp[1:6,] ## ----collapse = T-------------------------------------------------------- pool_dp<-extract(pool) head(pool_dp) ## ----collapse = T-------------------------------------------------------- ws10_dp<-extract(pool, w=10) ## ----collapse = T-------------------------------------------------------- ws20_dp<-extract(ws20, sig="tail1", seq.sig=20) ## ----collapse = T-------------------------------------------------------- bp(ws10_dp) bp(pool_dp) ## ----collapse = T-------------------------------------------------------- extract(pool, w=10, index="osd") ## ----collapse=T,fig.height=3.5, fig.width=7,fig.show='hold', tidy=TRUE, tidy.opts=list(width.cutoff=70)---- par(mfrow=c(1,2), cex=.9) plot(pool,w=10, main="DP from a single window (10)", cex.main=.8) plot(pool, main="DP from pooled windows (10, 20, 30 and 40)", bg=c("rainbow"),cex.main=.8) ## ----collapse=TRUE,fig.height=3.5, fig.width=3.5,fig.show='hold'--------- plot(pool, w.effect = TRUE, main="Window size effect") ## ----include=F----------------------------------------------------------- pw.sim<-pwRDA(x.ord=xo,y.ord=yo, BPs=bp(pool_dp)) ## ----eval=F-------------------------------------------------------------- # pw.sim<-pwRDA(x.ord=xo,y.ord=yo, BPs=bp(pool_dp)) ## ----fig.height=2.34, fig.width=7, collapse=TRUE,fig.show='hold', tidy=TRUE, tidy.opts=list(width.cutoff=70)---- head(pw.sim$summ) par(mfrow=c(1,3), cex=.65) # plotting the full rda model: plot(pw.sim$rda.0, main="full RDA model", las=1) # plotting the DP profile and saving the output in an new object dp<-plot(pool, main="DP from pooled windows \n (10, 20, 30 and 40)", bg=c("gold2", 'firebrick1'),cex.main=.8) # plotting the pwRDA colored according to the breakpoints: plot(pw.sim$rda.pw,type="n", scaling=3, main="pwRDA model") points(pw.sim$rda.pw, pch=16, col=bgDP(dp), cex=1.2) text(pw.sim$rda.pw, display="bp",pch=16,col="steelblue4",lwd=2) ## ----eval=FALSE---------------------------------------------------------- # # data(nema) # # 1 - Data ordering # nemao<-OrdData(nema$envi,nema$comm, method="hell") # # #2 - SMW analysis # nemapool<-SMW(yo=nemao$yo,ws=c(10,20,30,40,50,60,70)) # plot(nemapool) # nema_bp<-bp(extract(nemapool)) # # #3 - pwRDA analysis # nemapw<-pwRDA(nemao$xo,decostand(nemao$yo,"hell"),BPs=nema_bp) #