## ---- message=F, warning=F---------------------------------------------------- library(sdmpredictors) # exploring the marine datasets datasets <- list_datasets(terrestrial = FALSE, marine = TRUE) ## ---- echo = FALSE------------------------------------------------------------ knitr::kable(datasets, row.names = FALSE) ## ----------------------------------------------------------------------------- # exploring the marine layers layers <- list_layers(datasets) ## ---- echo = FALSE------------------------------------------------------------ knitr::kable(layers[1:3,1:4], row.names = FALSE) ## ----------------------------------------------------------------------------- # print the Bio-ORACLE citation print(dataset_citations("Bio-ORACLE")) # print the citation for ENVIREM as Bibtex print(lapply(dataset_citations("WorldClim", astext = FALSE), toBibtex)) # print the citation for a MARSPEC paleo layer print(layer_citations("MS_biogeo02_aspect_NS_21kya")) ## ---- eval = FALSE------------------------------------------------------------ # # download pH and Salinity to the temporary directory # load_layers(layers[layers$name %in% c("pH", "Salinity") & # layers$dataset_code == "Bio-ORACLE",], datadir = tempdir()) # # # set a default datadir, preferably something different from tempdir() # options(sdmpredictors_datadir= tempdir()) # # # (down)load specific layers # specific <- load_layers(c("BO_ph", "BO_salinity")) # # # equal area data (Behrmann equal area projection) # equalarea <- load_layers("BO_ph", equalarea = TRUE) ## ----------------------------------------------------------------------------- # exploring the available future marine layers future <- list_layers_future(terrestrial = FALSE) # available scenarios unique(future$scenario) unique(future$year) paleo <- list_layers_paleo(terrestrial = FALSE) unique(paleo$epoch) unique(paleo$model_name) ## ----------------------------------------------------------------------------- get_layers_info(c("BO_calcite","BO_B1_2100_sstmax","MS_bathy_21kya"))$common # functions to get the equivalent future layer code for a current climate layer get_future_layers(c("BO_sstmax", "BO_salinity"), scenario = "B1", year = 2100)$layer_code # functions to get the equivalent paleo layer code for a current climate layer get_paleo_layers(c("MS_bathy_5m", "MS_biogeo13_sst_mean_5m"), model_name = c("21kya_geophysical", "21kya_ensemble_adjCCSM"), years_ago = 21000)$layer_code ## ---- message=F, warning=F---------------------------------------------------- # looking up statistics and correlations for marine annual layers datasets <- list_datasets(terrestrial = FALSE, marine = TRUE) layers <- list_layers(datasets) # filter out monthly layers layers <- layers[is.na(layers$month),] layer_stats(layers)[1:2,] correlations <- layers_correlation(layers) # create groups of layers where no layers in one group # have a correlation > 0.7 with a layer from another group groups <- correlation_groups(correlations, max_correlation=0.7) # group lengths sapply(groups, length) for(group in groups) { if(length(group) > 1) { cat(paste(group, collapse =", ")) cat("\n") } } # plot correlations (requires ggplot2) plot_correlation(correlations)