## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(scribe) ## ----------------------------------------------------------------------------- ca <- command_args(c("-n", "5", "--method", "numbers")) ca$add_argument("-n", default = 1L) ca$add_argument("--method", default = "letters") args <- ca$parse() out <- seq_len(args$n) method <- match.arg(args$method, c("letters", "numbers")) if (method == "letters") { out <- letters[out] } out ## ----------------------------------------------------------------------------- my_summary <- function(data, levels = 7, sig_figs = 3, q_type = 7) { data <- get(data, mode = "list") stopifnot(is.data.frame(data)) summary(data, maxsum = levels, digits = sig_figs, quantile.type = q_type) } my_model <- function(data, correlation = FALSE) { data <- get(data, mode = "list") stopifnot(is.data.frame(data)) form <- stats::DF2formula(data) mod <- stats::lm(form, data) summary(mod, correlation = correlation) } ## ----------------------------------------------------------------------------- ca <- command_args(string = "CO2 --levels 3 --sig-figs 2 --q-type 3") ca$add_description("Summarise a dataset") ca$add_argument( "data", info = "Name of the dataset to find" ) ca$add_argument( "--levels", default = 7L, info = "Maximum number of levels shown for factors" ) ca$add_argument( "--sig-figs", default = 3L, info = "Number of significant figures" ) ca$add_argument( "--q-type", default = 7L, info = "Quantile type" ) args <- ca$parse() do.call(my_summary, args) ## ----------------------------------------------------------------------------- ca <- command_args(string = "attitude --correlation") ca$add_argument( "data", info = "Name of the dataset to find" ) ca$add_argument( "--correlation", action = "flag", info = "When set, prints the correlation matrix of estimated parameters" ) args <- ca$parse() do.call(my_model, args)