## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(scapGNN) ## ----echo = F, out.width = "100%"--------------------------------------------- knitr::include_graphics("../inst/extdata/flow_diagram1.png") ## ----echo = F, out.width = "100%"--------------------------------------------- knitr::include_graphics("../inst/extdata/flow_diagram2.png") ## ----------------------------------------------------------------------------- # Users can also directly input data in a data frame or matrix format which contains hypervariable genes and is log-transformed. data("Hv_exp") Prep_data <- Preprocessing(Hv_exp,verbose=FALSE) summary(Prep_data) ## ----------------------------------------------------------------------------- # View the content of the ConNetGNN() results. data(ConNetGNN_data) summary(ConNetGNN_data) ## ----fig.width = 15,fig.height = 7-------------------------------------------- data(scPathway_data) scPathway_data[1:3,1:3] ## ----echo = F, out.width = "100%"--------------------------------------------- knitr::include_graphics("../inst/extdata/heatmap.png") ## ----fig.width = 7,fig.height = 7--------------------------------------------- library(igraph) # Load data. data(ConNetGNN_data) data("Hv_exp") # Construct cell set. index<-grep("0h",colnames(Hv_exp)) cellset<-colnames(Hv_exp)[index] # Construct gene set. pathways<-load_path_data(system.file("extdata", "KEGG_human.gmt", package = "scapGNN")) geneset<-pathways[[which(names(pathways)=="Tight junction [PATH:hsa04530]")]] plotGANetwork(ConNetGNN_data,cellset,geneset,vertex.label.dist=1.5,main = "Tight junction [PATH:hsa04530]") ## ----fig.width = 7,fig.height = 7--------------------------------------------- require(igraph) require(graphics) data(ConNetGNN_data) # Construct the cell phenotype vector. cell_id<-colnames(ConNetGNN_data[["cell_network"]]) temp<-unlist(strsplit(cell_id,"_")) cell_phen<-temp[seq(2,length(temp)-1,by=3)] names(cell_id)<-cell_phen head(cell_id) plotCCNetwork(ConNetGNN_data,cell_id,edge.width=10) ## ----------------------------------------------------------------------------- require(parallel) require(stats) # Load the result of the ConNetGNN function. data(ConNetGNN_data) data(Hv_exp) # Construct the cell set corresponding to 0h. index<-grep("0h",colnames(Hv_exp)) cellset<-colnames(Hv_exp)[index] H9_0h_cpGM_data<-cpGModule(ConNetGNN_data,cellset,parallel.cores=1) summary(H9_0h_cpGM_data) ## ----fig.width = 7,fig.height = 7--------------------------------------------- library(igraph) # Load data. data(ConNetGNN_data) data("Hv_exp") data("H9_0h_cpGM_data") # Construct cell set. index<-grep("0h",colnames(Hv_exp)) cellset<-colnames(Hv_exp)[index] # Construct gene set. geneset<-H9_0h_cpGM_data$Genes plotGANetwork(ConNetGNN_data,cellset,geneset,vertex.label.dist=1.5,main = "Gene network of 0h cells activated gene module") ## ----fig.width = 7,fig.height = 7--------------------------------------------- require(igraph) require(grDevices) # Load the result of the ConNetGNN function. data(ConNetGNN_data) # Obtain cpGModule results for each cell phenotype. data(H9_0h_cpGM_data) data(H9_24h_cpGM_data) data(H9_36h_cpGM_data) data.list<-list(H9_0h=H9_0h_cpGM_data,H9_24h=H9_24h_cpGM_data,H9_36h=H9_36h_cpGM_data) plotMulPhenGM(data.list,ConNetGNN_data,margin=-0.05)