Type: | Package |
Title: | Single Cell RNA Sequencing Data Analysis Tools |
Version: | 1.0 |
Date: | 2018-06-25 |
Author: | Qian Yang |
Maintainer: | Qian Yang <bioqianyang@163.com> |
Description: | We integrated the common analysis methods utilized in single cell RNA sequencing data, which included cluster method, principal components analysis (PCA), the filter of differentially expressed genes, pathway enrichment analysis and correlated analysis methods. |
License: | GPL-2 |
Depends: | R (≥ 2.10), foreach, base |
Imports: | ALL, ConsensusClusterPlus, scatterplot3d, ggplot2, Rtsne, limma, edgeR, TPEA, Rmisc, lattice, plyr, ggthemes, reshape2, PerformanceAnalytics, corrplot, Hmisc, igraph, survival |
Suggests: | grid |
LazyData: | true |
LazyLoad: | yes |
NeedsCompilation: | no |
Packaged: | 2018-07-04 00:49:45 UTC; dell |
Repository: | CRAN |
Date/Publication: | 2018-07-05 14:00:03 UTC |
Single Cell RNA Sequencing Data Analysis Tools
Description
We integrated the common analysis methods utilized in single cell RNA sequencing data, which included cluster method, PCA, the filter of differentially expressed genes, pathway enrichment analysis and correlated analysis methods.
Author(s)
Qian Yang Maintainer: Qian Yang <bioqianyang@163.com>
Examples
####Here list three main function, cluster, PCA and t-SNE####
####cluster####
data(example1);##Example data in this package.
k<-6;##set K based on your own requirement.
scRNAtools_cluster(example1,k)
####PCA####
data(example1)
data(types)
pdf(file=file.path(tempdir(), "PCA_result-R.pdf"))##Save the figures of PCA results.
scRNAtools_pca(example1,types)
dev.off()
####t-SNE#####
data(exam)
scRNAtools_tsne(exam)
####Gene expression###
data(example)
types<-"1"
num<-0.8
scRNAtools_Geneexp(example,types,num)
Users interested genes or differentially expressed genes
Description
Gene list with two columns. The first column is Entrez ID of genes and the second column is gene symbol
correlation index
Description
The correlation index of the genes in the section of correlated analysis.
exam
Description
Example data in t-SNE method
exam1
Description
Example data in correlated analysis
example
Description
scRNA sequencing data in 50 cells and 1000 genes
example1
Description
scRNA sequencing data
Identification of differentially expressed genes
Description
Users can identify differentially expressed genes between two type of cells based on fold change value.
Usage
scRNAtools_DEGsA(example, types_all, type1, type2, num)
Arguments
example |
scRNA sequencing data with header. |
types_all |
Cell types in the example data. |
type1 |
Cell type one. |
type2 |
Cell type two. |
num |
Threshold value of expressed genes in appointed cell types. For example, we set 0.8 in example section. |
Details
The output data is the fold change value of differentially expressed genes.
Author(s)
Qian Yang
Examples
data(example)
data(types)
type1<-"No malignant"
type2<-"Malignant"
num<-0.8;###type1 Vs type2
pdf(file=file.path(tempdir(), "DEGs.pdf"))
scRNAtools_DEGsA(example,types_all,type1,type2,num)
dev.off()
Present the expression of two genes
Description
This function can present the expression of two gene in appointed cell type.
Usage
scRNAtools_Gene2exp_1(example, types_all, gene1, gene2, n, col_1, col_2, pch, lwd)
Arguments
example |
scRNA sequencing data without header. |
types_all |
Cell names of each type. |
gene1 |
Gene one you are interested in. |
gene2 |
Gene two you are interested in. |
n |
Number of cell names in scRNA sequening data. |
col_1 |
The color of line of gene one in the figure. |
col_2 |
The color of line of gene two in the figure. |
pch |
The shape of nodes in figure. |
lwd |
The width of lines in figure. |
Author(s)
Qian Yang
Examples
data(example)
data(types_all)
gene1<-"CHD1"
gene2<-"CD82"
col_1="red"
col_2="blue"
pch=19
lwd=1
n<-2
scRNAtools_Gene2exp_1(example,types_all,gene1,gene2,n,col_1,col_2,pch,lwd)
Present gene expression
Description
This function can present the expression of two gene in appointed cell type.
Usage
scRNAtools_Gene3exp_1(example,types_all,gene1,gene2,gene3,n,col_1,col_2,col_3,pch,lwd)
Arguments
example |
scRNA sequencing data without header. |
types_all |
Cell names of each type. |
gene1 |
Gene one you are interested in. |
gene2 |
Gene two you are interested in. |
gene3 |
Gene three you are interested in. |
n |
Number of cell names in scRNA sequening data. |
col_1 |
The color of line of gene one in the figure. |
col_2 |
The color of line of gene two in the figure. |
col_3 |
The color of line of gene three in the figure. |
pch |
The shape of nodes in figure. |
lwd |
The width of lines in figure. |
Author(s)
Qian Yang
Examples
data(example)
data(types_all)
gene1<-"CHD1"
gene2<-"CD82"
gene3<-"ASS1"
col_1="red"
col_2="blue"
col_3="green"
pch=19
lwd=2
n<-3
scRNAtools_Gene3exp_1(example,types_all,gene1,gene2,gene3,n,col_1,col_2,col_3,pch,lwd)
Expressed genes in scRNA sequencing data
Description
Extracted the genes expressed in cells. Users can set the threshold value.
Usage
scRNAtools_Geneexp(example, types, num)
Arguments
example |
scRNA sequencing data without header. |
types |
Cell types in the example data. |
num |
Threshold value of expressed genes in appointed cell types. For example, we set 0.8 in example section. |
Value
zset |
Gene expression data required the threshold value. |
Author(s)
Qian Yang
Examples
data(example)
types<-"1"
num<-0.8
scRNAtools_Geneexp(example,types,num)
Present gene expression
Description
This function can present the expression of one gene in appointed cell type.
Usage
scRNAtools_Geneexp_1(example, gene, types_all, n, col, pch, lwd)
Arguments
example |
scRNA sequencing data without header. |
gene |
One gene you are interested in. |
types_all |
Cell names of each type. |
n |
Number of cell names in scRNA sequening data. |
col |
The color of line in the figure. |
pch |
The shape of nodes in figure. |
lwd |
The width of lines in figure. |
Author(s)
Qian Yang
Examples
data(example)
data(types_all)
gene<-"CHD1";###Set the gene you are interested in.
n<-3;###Set the type of cells you are interested in.
col<-"red";###Set the color of line in the figure.
pch<-19;###Set the shape of nodes in figure.
lwd<-2;###Set the width of lines in figure.
scRNAtools_Geneexp_1(example,gene,types_all,n,col,pch,lwd)
Pathway enrichment analysis
Description
Pathway enrichment analysis using the interested gene set or differentially expressed gene set provided by users. This data contains two column (Enterz ID and gene sybmols)
Usage
scRNAtools_PEA(DEGs,number)
Arguments
DEGs |
Interested gene set of differentially expressed gene set. |
number |
The number of random, for example, users can set 1000, 5000 or more. |
Details
This function integrated method to do the pathway enrichment analysis, TPEA.
Value
The significant pathways are wrote in the occurrent path.
Author(s)
Qian Yang
References
Wei Jiang (2017). TPEA: A Novel Topology-Based Pathway Enrichment Analysis Approach.
Examples
data(DEGs)
number<-10
pdf(file=file.path(tempdir(), "enrichment analysis.pdf"))
scRNAtools_PEA(DEGs,number)
dev.off()
Cluster section
Description
Do consistent clustering analysis use clusterProfiler method
Usage
scRNAtools_cluster(example1, k)
Arguments
example1 |
scRNA sequencing data with header. |
k |
The number of class. If you set k is 6, you will obtain 6 results of cluster. |
Details
The results are presented in your occurrent path.
Author(s)
Qian Yang
References
Guangchuang Yu, Li-Gen Wang, Yanyan Han and Qing-Yu He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 2012, 16(5):284-287.
Examples
##setwd("")###Set the path your data in.
data(example1)##Example data in this package.
k<-6##set K based on your own requirement.
scRNAtools_cluster(example1,k)
Correlation analysis
Description
Correlation analysis of interested gene set or differentially expressed gene set.
Usage
scRNAtools_cor_map(exam1, types_all, type, methods)
Arguments
exam1 |
scRNA sequencing data of several genes and cells. |
types_all |
Cell names of each type. |
type |
Cell type. |
methods |
correlation methods including "pearson", "kendall" and "spearman". |
Details
Return the correlation index of each two genes.
Author(s)
Qian Yang
Examples
data(exam1)
data(types_all)
type<-"Malignant";
methods<-"pearson";##methods = c("pearson", "kendall", "spearman").
pdf(file=file.path(tempdir(), "correlation_color.pdf"))
scRNAtools_cor_map(exam1,types_all,type,methods)
dev.off()
Present correlation index in figure
Description
Correlation analysis with correlation index of interested gene set or differentially expressed gene set.
Usage
scRNAtools_cor_map_r(exam1, types_all, type, methods)
Arguments
exam1 |
scRNA sequencing data of several genes and cells. |
types_all |
Cell names of each type. |
type |
Cell type. |
methods |
correlation methods including "pearson", "kendall" and "spearman". |
Details
Return the correlation index of each two genes.
Author(s)
Qian Yang
Examples
data(exam1)
data(types_all)
type<-"Malignant";
methods<-"pearson";##methods = c("pearson", "kendall", "spearman").
pdf(file=file.path(tempdir(), "correlation_num.pdf"))
scRNAtools_cor_map_r(exam1,types_all,type,methods)
dev.off()
Construction of interactive network in scRNA sequencing data
Description
Construction of interactive network based on scRNa sequencing data.
Usage
scRNAtools_inter_net(corr_re, p, r, size, color)
Arguments
corr_re |
The results of correlation analysis, which including four columns, the first two columns are genes and the last two columns are correlation index and p-value,respectively. |
p |
The p-value of correlation index. |
r |
Correlation index |
size |
The size of nodes in the network. |
color |
The color of nodes in the network. |
Author(s)
Qian Yang
Examples
data(corr_re)
p<-0.05
r<-0.9
size<-5 #nodes size
color<-"#00B2EE" ##Color of nodes.
pdf(file=file.path(tempdir(), "interact_net.pdf"))
scRNAtools_inter_net(corr_re,p,r,size,color)
dev.off()
PCA analysis
Description
PCA analysis for scRNA sequencing data
Usage
scRNAtools_pca(example1, types)
Arguments
example1 |
scRNA sequencing data with header. |
types |
Cell types in the example data. |
Author(s)
Qian Yang
Examples
data(example1)
data(types)
pdf(file=file.path(tempdir(), "PCA_result-R.pdf"))##Save the figures of PCA results.
scRNAtools_pca(example1,types)
dev.off()
3D PCA analysis
Description
PCA analysis for scRNA sequencing data and present 3D figure.
Usage
scRNAtools_pca_3D(example1, types)
Arguments
example1 |
scRNA sequencing data with header. |
types |
Cell types in the example data. |
Author(s)
Qian Yang
Examples
##3D PCA analysis
data(example1)
data(types)
scRNAtools_pca_3D(example1,types)##3D figure of PCA results.
t-SNE analysis
Description
t-SNE analysis for scRNA sequencing data
Usage
scRNAtools_tsne(exam)
Arguments
exam |
scRNA sequencing data with four genes. Users can reference the format and input their own data. |
Author(s)
Qian Yang
References
L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008.
Examples
data(exam)
scRNAtools_tsne(exam)
types
Description
Cell types in the example data
types_all
Description
Cell names of each type