## ----setup, include=FALSE------------------------------------------------ knitr::opts_chunk$set(echo = TRUE) ## ----installation, eval=FALSE, message=FALSE, warning=FALSE-------------- # install.packages('sbl_0.1.0.tar.gz', repos=NULL, type='source') ## ----load data, message=FALSE, warning=FALSE----------------------------- library('sbl') # load example data data(phe) data(intercept) data(gen) ## ----minimal invocation, message=FALSE, warning=FALSE-------------------- # A minimal invocation of "sblgwas()" function looks like: fit1<-sblgwas(x = intercept, y = phe, z = gen) # Restuls of markers surrounding the second simulated QTL with non-zero effect in the example data fit1$blup[c(17:21),] ## ----hyper parameter, message=FALSE, warning=FALSE----------------------- # Setting t = 0 leads to the most sparse model fit2<-sblgwas(x = intercept, y = phe, z = gen, t = 0) fit2$parm # Setting t = -2 leads to the least sparse model fit3<-sblgwas(x = intercept, y = phe, z = gen, t = -2) fit3$parm ## ----iteration, message=FALSE, warning=FALSE----------------------------- # Set max.iter and min.err to control the convergence of the program fit4<-sblgwas(x = intercept, y = phe, z = gen, t = -1, max.iter = 300, min.err = 1e-8) fit4$parm