## ----eval = TRUE-------------------------------------------------------------- library(santaR) # Load a subset of the example data tmp_data <- acuteInflammation$data[,1:6] tmp_meta <- acuteInflammation$meta # Analyse data, with confidence bands and p-value res_acuteInf_df5 <- santaR_auto_fit(inputData=tmp_data, ind=tmp_meta$ind, time=tmp_meta$time, group=tmp_meta$group, df=5, ncores=0, CBand=TRUE, pval.dist=FALSE) ## ----fig.width = 7, fig.height = 5, dpi = 96, eval = TRUE--------------------- # Default plot # individual points, individual trajectories, group mean curves and confidence bands # access by list position santaR_plot(res_acuteInf_df5[[5]]) # access by variable name santaR_plot(res_acuteInf_df5$var_5) ## ----fig.width = 7, fig.height = 5, dpi = 96, eval = TRUE--------------------- # only groupMeanCurve santaR_plot(res_acuteInf_df5$var_5, showIndPoint=FALSE, showIndCurve=FALSE, showGroupMeanCurve=TRUE, showConfBand=TRUE) # only Individuals santaR_plot(res_acuteInf_df5$var_5, showIndPoint=TRUE, showIndCurve=TRUE, showGroupMeanCurve=FALSE, showConfBand=FALSE) # add confidence bands (only available if previously calculated) santaR_plot(res_acuteInf_df5$var_5, showIndPoint=TRUE, showIndCurve=TRUE, showGroupMeanCurve=TRUE, showConfBand=TRUE) # add a totalMeanCurve (grey) santaR_plot(res_acuteInf_df5$var_5, showTotalMeanCurve=TRUE ) ## ----fig.width = 7, fig.height = 5, dpi = 96, eval = TRUE--------------------- # add title santaR_plot(res_acuteInf_df5$var_5, title='A figure title') # remove the legend santaR_plot(res_acuteInf_df5$var_5, title='A variable, no legend', legend=FALSE) # force purple and green color santaR_plot(res_acuteInf_df5$var_5, title='A variable in different colors', colorVect = c('purple','green')) # Default colors are in order: "blue", "red", "green", "orange", "purple", "seagreen", "darkturquoise", "violetred", "saddlebrown", "black" # add x and y labels santaR_plot(res_acuteInf_df5$var_5, title='Different axis labels', xlab='Time', ylab='Variable value') ## ----fig.width = 7, fig.height = 5, dpi = 96, eval = TRUE--------------------- library(ggplot2) # add x and y labels by adding it outside the plotting function [not useful but shows that any ggplot command can be added to the plot] santaR_plot(res_acuteInf_df5$var_5, title='A variable') + xlab('Time') + ylab('Variable value') # Constrain the x axis (will remove points and raise warnings) santaR_plot(res_acuteInf_df5$var_5, showConfBand=FALSE, title='A variable', xlab='Time', ylab='Variable value') + xlim(0,48) # Looser y limits santaR_plot(res_acuteInf_df5$var_5, title='A variable', xlab='Time', ylab='Variable value') + ylim(-2,5) ## ----fig.width = 7, fig.height = 5, dpi = 96, eval = TRUE--------------------- library(gridExtra) # store plot in a variable, plot multiple variables... p1 <- santaR_plot(res_acuteInf_df5$var_3, title='First variable', xlab='Time', ylab='Variable value') plot(p1) p2 <- santaR_plot(res_acuteInf_df5$var_4, title='Second variable', xlab='Time', ylab='Variable value') # multiplot grid.arrange(p1, p2) # force them side by side grid.arrange(p1, p2, ncol=2) # Force both plots on the same y limits (remove legend from plots) p1 <- santaR_plot(res_acuteInf_df5$var_3, title='First variable', xlab='Time', ylab='Variable value', legend=FALSE) p2 <- santaR_plot(res_acuteInf_df5$var_4, title='Second variable', xlab='Time', ylab='Variable value', legend=FALSE) p1 <- p1 + ylim(-1.2, 4.2) p2 <- p2 + ylim(-1.2, 4.2) grid.arrange(p1, p2, ncol=2 )