## ----------------------------------------------------------------------------- library(santaR) # data (keep the 3rd variable) var1_data <- acuteInflammation$data[,3] # metadata (common to all variables) var1_meta <- acuteInflammation$meta # 7 unique time-points unique(var1_meta$time) # 8 individuals unique(var1_meta$ind) # 2 groups unique(var1_meta$group) # 72 measurements for the given variable var1_data ## ----eval = FALSE------------------------------------------------------------- # var1_input <- get_ind_time_matrix( Yi=var1_data, ind=var1_meta$ind, time=var1_meta$time) # var1_input ## ----results = "asis", echo = FALSE------------------------------------------- var1_input <- get_ind_time_matrix( Yi=var1_data, ind=var1_meta$ind, time=var1_meta$time) pander::pandoc.table(var1_input) ## ----eval = FALSE------------------------------------------------------------- # var1_group <- get_grouping( ind=var1_meta$ind, group=var1_meta$group) # var1_group ## ----results = "asis", echo = FALSE------------------------------------------- var1_group <- get_grouping( ind=var1_meta$ind, group=var1_meta$group) pander::pandoc.table(var1_group) ## ----------------------------------------------------------------------------- var_eigen <- get_eigen_spline( inputData=acuteInflammation$data, ind=acuteInflammation$meta$ind, time=acuteInflammation$meta$time) ## ----eval=FALSE--------------------------------------------------------------- # # The projection of each eigen-spline at each time-point: # var_eigen$matrix ## ----results = "asis", echo = FALSE------------------------------------------- pander::pandoc.table(var_eigen$matrix) ## ----------------------------------------------------------------------------- # The variance explained by each eigen-spline var_eigen$variance # PCA summary summary(var_eigen$model) ## ----eval = FALSE------------------------------------------------------------- # # The projection of each eigen-spline at each time-point: # get_eigen_DF(var_eigen) # # # $df ## ----results = "asis", echo = FALSE------------------------------------------- tmpDF <- get_eigen_DF(var_eigen) pander::pandoc.table(tmpDF$df) ## ----eval = FALSE------------------------------------------------------------- # # $wdf ## ----results = "asis", echo = FALSE------------------------------------------- pander::pandoc.table(tmpDF$wdf) ## ----fig.width = 7, fig.height = 7, dpi = 80---------------------------------- library(gridExtra) # generate all the parameter values across df var_eigen_paramEvo <- get_param_evolution(var_eigen, step=0.1) # plot the metric evolution plot(arrangeGrob(grobs=plot_param_evolution(var_eigen_paramEvo, scaled=FALSE))) # Scale the metrics for each eigen-spline between 0 and 1 plot(arrangeGrob(grobs=plot_param_evolution(var_eigen_paramEvo, scaled=TRUE))) ## ----fig.width = 8, fig.height =8, dpi = 90----------------------------------- library(gridExtra) # plot all eigen-projections plot(arrangeGrob(grobs=get_eigen_DFoverlay_list(var_eigen, manualDf = 5))) ## ----fig.width = 7, fig.height = 5, dpi = 80---------------------------------- # dfCutOff controls which cut-off is to be applied plot_nbTP_histogram(var_eigen, dfCutOff=5) ## ----------------------------------------------------------------------------- var1 <- santaR_fit(var1_input, df=5, groupin=var1_group) # it is possible to access the SANTAObj structure, which will be filled in the following steps var1$properties var1$general var1$groups$Group1 ## ----------------------------------------------------------------------------- var1 <- santaR_CBand(var1) ## ----fig.width = 7, fig.height = 5, dpi = 96---------------------------------- santaR_plot(var1) ## ----------------------------------------------------------------------------- var1 <- santaR_pvalue_dist(var1) # p-value var1$general$pval.dist # lower p-value confidence range var1$general$pval.dist.l # upper p-value confidence range var1$general$pval.dist.u # curve correlation coefficiant var1$general$pval.curveCorr