Type: | Package |
Title: | Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel |
Version: | 0.1.1 |
Author: | Wicak Surya Hasani[aut, cre], Azka Ubaidillah[aut] |
Maintainer: | Wicak Surya Hasani <221710052@stis.ac.id> |
Description: | Propose an area-level, non-parametric regression estimator based on Nadaraya-Watson kernel on small area mean. Adopt a two-stage estimation approach proposed by Prasad and Rao (1990). Mean Squared Error (MSE) estimators are not readily available, so resampling method that called bootstrap is applied. This package are based on the model proposed in Two stage non-parametric approach for small area estimation by Pushpal Mukhopadhyay and Tapabrata Maiti(2004) http://www.asasrms.org/Proceedings/y2004/files/Jsm2004-000737.pdf. |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.0.2 |
URL: | https://github.com/wicaksh/saekernel |
BugReports: | https://github.com/wicaksh/saekernel/issues |
Suggests: | knitr, rmarkdown, covr |
VignetteBuilder: | knitr |
Imports: | stats |
Depends: | R (≥ 2.10) |
NeedsCompilation: | no |
Packaged: | 2021-06-03 17:25:03 UTC; User |
Repository: | CRAN |
Date/Publication: | 2021-06-04 07:40:02 UTC |
Sample Data for Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel
Description
Dataset to Simulate Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel
This data is generated by these following steps:
Generate explanatory variables
Vardir
.Vardir ~ abs(N(0, 0.1))
Generate explanatory variablesx
.x ~ U(min=0, max=1)
Calculate direct estimationy
wherey_{i}
=sin(2 * \pi * x^3) + 5
Then combine the direct estimations
y
, auxiliary variablesx
, and sampling variansVardir
in a dataframe then named as Data_saekernel
Usage
Data_saekernel
Format
A data frame with 100 rows and 3 variables:
- y
Direct Estimation of Y
- x
Auxiliary Variable of X
- Vardir
Sampling Variance of Y
Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel and Bootstrap Mean Squared Error Estimators
Description
This Function Gives Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel and Calculates The Bootstrap Mean Squared Error Estimates
Usage
mse_saekernel(X, Y, vardir, bandwidth, B = 1000)
Arguments
X |
Auxiliary Variable of X |
Y |
Direct Estimation of Y |
vardir |
Sampling Variances of Direct Estimators |
bandwidth |
The kernel Bandwidth Smoothing Parameter |
B |
Number of Bootstrap. Default is 1000 |
Value
This function returns a list with following objects:
est |
a value of Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel |
refvar |
Estimated Random Effect Variance |
mse |
Bootstrap Mean Squared Error Estimators of Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel |
Examples
##load dataset
data(Data_saekernel)
mse_saekernel(X = Data_saekernel$x, Y = Data_saekernel$y,
vardir = Data_saekernel$Vardir, bandwidth = 0.04, B = 1000)
Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel
Description
This Function Gives Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel
Usage
saekernel(X, Y, vardir, bandwidth)
Arguments
X |
Auxiliary Variable of X |
Y |
Direct Estimation of Y |
vardir |
Sampling variances of Direct Estimators |
bandwidth |
The kernel Bandwidth Smoothing Parameter |
Value
This function returns a list with following objects:
est |
a value of Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel |
refvar |
Estimated Random Effect Variance |
Examples
##load dataset
data(Data_saekernel)
saekernel(X = Data_saekernel$x, Y = Data_saekernel$y,
vardir = Data_saekernel$Vardir, bandwidth = 0.04)