## ---- SETTINGS-knitr, include=FALSE------------------------------------------- stopifnot(require(knitr)) opts_chunk$set( comment=NA, message = FALSE, warning = FALSE, eval = identical(Sys.getenv("NOT_CRAN"), "true"), dev = "png", dpi = 150, fig.asp = 0.618, fig.width = 5, out.width = "60%", fig.align = "center" ) ## ---- SETTINGS-gg, include=TRUE----------------------------------------------- library(ggplot2) library(bayesplot) theme_set(bayesplot::theme_default()) ## ---- results = "hide"-------------------------------------------------------- library(rstanarm) data(roaches) roaches$roach1 <- roaches$roach1 / 100 roaches$log_exposure2 <- log(roaches$exposure2) post <- stan_gamm4( y ~ s(roach1) + treatment + log_exposure2, random = ~(1 | senior), data = roaches, family = neg_binomial_2, QR = TRUE, cores = 2, chains = 2, adapt_delta = 0.99, seed = 12345 ) ## ----------------------------------------------------------------------------- plot_nonlinear(post) ## ----------------------------------------------------------------------------- data("Orange", package = "datasets") Orange$age <- Orange$age / 100 Orange$circumference <- Orange$circumference / 100 ## ---- warning=TRUE------------------------------------------------------------ startvec <- c(Asym = 2, xmid = 7.25, scal = 3.5) library(lme4) nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree, data = Orange, start = startvec) summary(nm1) ## ---- echo = FALSE------------------------------------------------------------ grep("^SS[[:lower:]]+", ls("package:stats"), value = TRUE) ## ---- results = "hide"-------------------------------------------------------- post1 <- stan_nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree, data = Orange, cores = 2, seed = 12345, init_r = 0.5) ## ----------------------------------------------------------------------------- post1 ## ----------------------------------------------------------------------------- plot(post1, regex_pars = "^[b]") ## ----------------------------------------------------------------------------- nd <- data.frame(age = 1:20, Tree = factor("6", levels = 1:6)) PPD <- posterior_predict(post1, newdata = nd) PPD_df <- data.frame(age = as.factor(rep(1:20, each = nrow(PPD))), circumference = c(PPD)) ggplot(PPD_df, aes(age, circumference)) + geom_boxplot() ## ---- eval = FALSE------------------------------------------------------------ # post3 <- stan_nlmer(conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ # (0 + lKe + lKa + lCl | Subject), data = Theoph, # cores = 2, seed = 12345, # QR = TRUE, init_r = 0.25, adapt_delta = 0.999) # pairs(post3, regex_pars = "^l") # pairs(post3, regex_pars = "igma")